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ABSTRACT: Materials synthesized by organisms, such as
bones and wood, combine the ability to self-repair with
remarkable mechanical properties. This multifunctionality
arises from the presence of living cells within the material
and hierarchical assembly of different components across
nanometer to micron scales. While creating engineered
analogues of these natural materials is of growing interest,
our ability to hierarchically order materials using living cells
largely relies on engineered 1D protein filaments. Here, we lay
the foundation for bottom-up assembly of engineered living
material composites in 2D along the cell body using a synthetic biology approach. We engineer the paracrystalline surface-layer
(S-layer) of Caulobacter crescentus to display SpyTag peptides that form irreversible isopeptide bonds to SpyCatcher-modified
proteins, nanocrystals, and biopolymers on the extracellular surface. Using flow cytometry and confocal microscopy, we show
that attachment of these materials to the cell surface is uniform, specific, and covalent, and its density can be controlled on the
basis of the insertion location within the S-layer protein, RsaA. Moreover, we leverage the irreversible nature of this attachment
to demonstrate via SDS-PAGE that the engineered S-layer can display a high density of materials, reaching 1 attachment site per
288 nm2. Finally, we show that ligation of quantum dots to the cell surface does not impair cell viability, and this composite
material remains intact over a period of 2 weeks. Taken together, this work provides a platform for self-organization of soft and
hard nanomaterials on a cell surface with precise control over 2D density, composition, and stability of the resulting composite,
and is a key step toward building hierarchically ordered engineered living materials with emergent properties.
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Living organisms hierarchically order soft and hard
components to create biominerals that have multiple

exceptional physical properties.1 For example, the hierarchical
structure of nacre creates its unusual combination of stiffness,
toughness, and iridescence. Genetically manipulating living
cells to arrange synthesized materials into engineered living
materials (ELMs)2,3 opens a variety of applications in
bioelectronics,4 biosensing,5 smart materials,6 and catalysis.3−7

Many of these approaches use surface display of 1D protein
filaments8−11 or membrane proteins12,13 to arrange materials,
while cell display methods that hierarchically order materials in
2D with controlled spatial positioning and density have yet to
be fully developed. This gap limits the structural versatility and
degree of control available to rationally engineer ELMs.
Surface-layer (S-layer) proteins offer an attractive platform

to scaffold materials in 2D on living cells due to their dense,
periodic structures, which form lattices on the outermost
surface of many prokaryotes14 and some eukaryotes.15 These
monomolecular arrays can have hexagonal (p3, p6),16,17

oblique (p1, p2),18,19 or tetragonal (p4)20 geometries and
play critical roles in cell structure,21,22 virulence,23 protection,24

adhesion,25 and more. Recombinant S-layer proteins can
replace the wild-type lattice in native hosts, or can be isolated
and recrystallized in vitro, on solid supports, or as vesicles.26

These have been used for a number of applications,26,27

including bioremediation28 and therapeutics29 on cells.
To date, only two S-layer proteins have solved atomic

structures, allowing for subnanometer precise positioning of
attached materials: SbsB of Geobacillus stearothermophilus
PV7218 and RsaA of Caulobacter crescentus CB15.30 Of these
two S-layer proteins, there is a well-established toolkit for the
genetic modification of C. crescentus, as it has been studied
extensively for its dimorphic cell cycle.31 Additionally,
C. crescentus is a Gram-negative, oligotrophic bacterium that
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thrives in low-nutrient conditions, and while a strict aerobe,
can survive microaeration.32 Together, this makes C. crescentus
particularly suitable as an ELM chassis. RsaA forms a p6
hexameric lattice with a 22 nm unit cell (Figure 1a,b) at an

estimated density of 45 000 monomers per bacterium33 and is
amenable to peptide insertions.34 Specific protein domains
have been inserted in RsaA to bind lanthanide metal ions35 or
viruses.29 However, engineered RsaA variants currently lack
the ability to assemble a variety of materials, in an irreversible
fashion, and with well-characterized densityall key features
needed for ELMs.
Here we engineer RsaA as a modular docking point to ligate

inorganic, polymeric, or biological materials to the cell surface
of C. crescentus without disrupting cell viability. This 2D
assembly system is specific, stable, and allows for control over
the density of attached materials without the use of chemical
cues, achieving a maximal coverage of ∼25% of all possible
sites, the highest density of cell-surface displayed proteins
reported to our knowledge. This work forms the foundation for
a new generation of hierarchically assembled ELMs.

■ RESULTS AND DISCUSSION
Design and Construction of Caulobacter crescentus S-

Layer Variants for Surface Display. To display materials on
the surface of C. crescentus cells, we designed a genetic module
that meets four criteria: (i) a solution-exposed peptide that
drives (ii) specific, stable, and stoichiometric attachment (iii)
with tunable occupancy and (iv) that does not disrupt RsaA
coverage. We hypothesized that varying the location of the
binding peptide within RsaA might affect its solution
accessibility leading to strains that have a range of occupancy.
Therefore, we selected a panel of locations arrayed across the
entire RsaA monomer (Figure 2a) to insert the peptide. Smit
and colleagues previously identified two sites, at amino acid
positions 723 and 944, that allowed for surface display of
peptides,34 so we started with these positions. We then
selected six additional sites that are known to be susceptible to
proteolytic cleavage, presumably by the previously charac-
terized S-layer Associated Protease (sapA).36 We hypothesized

these additional sites, immediately following amino acid
positions 277, 353, 467, 485, 622, and 690, might be accessible
in a ΔsapA strain which we created (abbreviated as
CB15NΔsapA). All subsequent engineering to the eight
positions within rsaA was done in this background.
To achieve specific, stoichiometric, and irreversible con-

jugation to RsaA, we employed the split-protein system
SpyTag-SpyCatcher,37,38 which forms an isopeptide bond
between the SpyCatcher protein and SpyTag peptide. The
RsaA S-layer can accommodate insertion of large peptide
sequences,29,35 which suggested that the 45-mer SpyTag
peptide sequence, flanked on each side by a (GSSG)4 flexible
linker for accessibility, may be integrated and displayed
without disrupting S-layer assembly. This modified lattice
should then allow the formation of a covalent isopeptide bond
between any material displaying the SpyCatcher partner
protein and the SpyTag on the cell surface.
Since expression of RsaA from a p4-based plasmid in an

ΔrsaA background formed a lattice structure indistinguishable
from genomically expressed RsaA (Figure 1b), we initially
constructed p4-based plasmids39 that constitutively express
RsaA-SpyTag fusions (Table S2) and transformed them into
C. crescentus JS4038.39 Examination of the cell surface of two of
these plasmid-bearing strains by AFM confirmed that RsaA-
SpyTag was expressed and showed that the RsaA-SpyTag
formed a S-layer lattice with the same nanoscale ordering as
wild-type RsaA (Figure 1b−d). However, we observed

Figure 1. RsaA forms a 2D hexameric lattice on the surface of
C. crescentus. (a) Structure of the RsaA lattice.30 (b) High resolution
AFM images of the wild-type RsaA lattice (strain MFm111), (c)
RsaA485:SpyTag (strain MFm 118), (d) RsaA690:SpyTag (strain
MFm 120) on the surface of C. crescentus cells. In all three cases, a
well-ordered, hexagonal protein lattice is observed. The unit cell
length (center-to-center distance between adjacent hexagons) is 22 ±
1 nm, which is the same as reported in literature. Scale bar is 40 nm.
See Methods for experimental details of AFM. Figure 2. Design and expression of RsaA-SpyTag in C. crescentus. (a)

Ribbon diagram of the RsaA monomer structure30 indicating SpyTag
insertion sites (orange). Inset shows a space-filling model of the RsaA
hexamer. (b) Design of engineered C. crescentus strains expressing
RsaA-SpyTag. SpyTag flanked by upstream and downstream
(GGSG)4 spacers was directly inserted into the genomic copy of
rsaA. (c) Immunoblot with anti-RsaA antibodies of C. crescentus
strains whole cell lysate. The band corresponding to RsaA increases in
molecular weight from wild-type RsaA (lane 2) to RsaA-SpyTag at the
each insertion sites (lanes 3−10).
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significant growth defects, morphological changes, and
unstable RsaA expression in all of the plasmid-bearing strains
(Figure S1). For this reason, we integrated SpyTag and its
linkers directly into the genomic copy of rsaA (Figure 2b) in
the CB15NΔsapA background (Table S1). We notate these
strains based on the SpyTag insertion site, e.g., rsaA690:SpyTag
denotes insertion of the SpyTag and (GSSG)4 linkers
immediately after amino acid 690. No growth defects or
morphological changes are apparent in any of the engineered
strains, implying that our genomic insertions do not affect cell
viability, and therefore these strains were used for the rest of
the study. These observations suggest the more regulated
genomic expression of recombinant rsaA, a highly transcribed
gene, sidesteps growth impairments.
SDS-PAGE analysis of RsaA-SpyTag expression of wild-type

(CB15NΔsapA) and engineered cells (rsaA:SpyTag variants)
shows the expected band for wild-type RsaA at 110 kDa
(Figure 2c), in line with the observed migration of RsaA on
SDS-PAGE.40,30 Moreover, all eight engineered proteins have
comparable expression levels to wild-type RsaA and show the
small increase in molecular weight associated with SpyTag and
its linkers (Figure 2c). These observations demonstrate that
successful expression of SpyTag within RsaA at a range of
different positions does not adversely affect RsaA expression
levels.
Engineered S-Layers Specifically Display Proteins

Ligated to the Cell Surface. To explore accessibility of
the SpyTag peptide on the C. crescentus cell surface, we

engineered and purified a fusion of SpyCatcher and
mRFP1.41−43 We incubated the wild-type and engineered
rsaA690:SpyTag strains with the fluorescent SpyCatcher-
mRFP1 protein or mRFP1 alone, washed away unbound
protein, and visualized mRFP1 attachment to individual cells
via confocal microscopy (Figure 3). No significant mRFP1
fluorescence is apparent in controls that used C. crescentus
expressing wild-type RsaA or mRFP1 without SpyCatcher
(Figure 3a−c), indicating no significant nonspecific binding of
mRFP1 to the cell surface. When SpyTag is displayed on RsaA
and SpyCatcher-mRFP1 is present, bright and uniform
fluorescence is observed along the morphologically normal,
curved cell surface, including the stalk which is covered by the
S-layer lattice17,30,33 (Figure 3d). These observations indicate
engineering SpyTag into RsaA enables specific binding of a
SpyCatcher fusion protein to the extracellular surface, and
furthermore illustrates that engineering SpyTag into the S-layer
does not substantially affect the morphology of C. crescentus.

Density of Attached Materials Is Controlled by
Insertion Location. Having demonstrated specific display
of proteins on the surface, we turned to the hypothesis that the
solution-accessibility of the eight insertion locations within the
RsaA monomer would allow us to vary the density of attached
materials. To quantify this relative accessibility, we again
incubated the engineered strains with SpyCatcher-mRFP1,
washed away unbound protein, and measured the fluorescence
intensity per cell with flow cytometry. The engineered strains
show a >100-fold increase in fluorescent signal (Figure 4a)

Figure 3. SpyCatcher protein fusions ligate specifically to the surface of C. crescentus expressing RsaA-SpyTag. (a−d) Confocal fluorescence images
of C. crescentus cells visualized in DAPI and RFP channels. Cells expressing wild-type RsaA incubated with (a) mRFP1 or (b) SpyCatcher-mRFP1.
Cells expressing RsaA690-SpyTag with (c) mRFP1 or (d) SpyCatcher-mRFP1. Only when the SpyCatcher-mRFP1 probe is introduced to cells
displaying SpyTag (d) is RFP fluorescence tightly associated with the cell membrane observed, including the stalk region. Scale bar = 3 μm.
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over the wild-type control, indicating that all eight positions
can ligate significant amounts of SpyCatcher fusion protein.
Among the eight engineered strains, there is a ∼5-fold
variation in the levels of ligation (Table 1), with
rsaA467:SpyTag and rsaA485:SpyTag showing the highest
and lowest densities of binding, respectively. These results
unveil six new permissive insertion sites within RsaA and show
that the amount of protein bound to the cell surface can be
controlled by utilizing these different insertion points.
To test that the fusion protein is irreversibly conjugated to

RsaA-SpyTag, we incubated strain rsaA467:SpyTag, which
showed the highest fluorescence by flow cytometry, with
SpyCatcher-mRFP1, boiled the sample for 10 min with SDS
and 2-mercaptoethanol, and visualized covalent attachment by
SDS-PAGE (Figure 4b). The band corresponding to RsaA-
SpyTag (Figure 4b) decreases in intensity while the band
corresponding to the RsaA-SpyTag-SpyCatcher-mRFP1 as-
sembly appears in as little as 1 h and increases over 24 h.
Subsequent immunoblotting of this reaction with anti-RsaA
polyclonal antibodies confirms that the assembly band contains
RsaA (Figure S2). These observations indicate the binding is
covalent.
We leveraged the formation of this covalent bond to

quantify the absolute density of SpyCatcher-mRFP1 displayed
on the C. crescentus cell surface. The density of the RsaA band
decreases by 23 ± 5% (n = 6, refer to Methods for the details
of this calculation), indicating that nearly a quarter of the
rsaA467:SpyTag protein is ligated to SpyCatcher-mRFP1 after
24 h. On the basis of the estimate of 45 000 RsaA monomers

per cell,33 this translates to >11 000 copies of SpyCatcher-RFP
displayed on the cell surface, an average density of 1.5
SpyCatcher-RFPs per RsaA hexamer, or 1 SpyCatcher-RFP per
288 nm2. Combining this information with the flow cytometry
data, we calculated the percentage of the RsaA lattice that is
covalently modified can be controlled over a range from 4 to
23% by varying the engineered location (Table 1, refer to
Methods for the details of this calculation). These results
provide quantitative information on how to utilize position-
dependent insertion of SpyTag in RsaA to tune the density of
attached materials and thus substantially improve our ability to
rationally engineer ELMs.

Arraying Hard and Soft Materials on the Surface of
Engineered Cells. Next we sought to test whether engineered
RsaA could assemble soft materials on the surface of
C. crescentus. We selected elastin-like polypeptide (ELP) as
our model soft material because it is well-studied, easily
expressed recombinantly, and exhibits interesting temperature-
dependent phase behavior.44 We incubated a SpyCatcher-ELP-
mCherry fusion protein45 with the wild-type and rsaA690:S-
pyTag strains, washed away unbound protein, and imaged
individual cells by confocal microscopy. As before, we observe
no significant mCherry fluorescence from incubations lacking
either SpyTag or SpyCatcher (Figure 5a,b), indicating there is
no significant nonspecific binding of ELP-mCherry to the
C. crescentus surface. When both SpyTag and SpyCatcher are
present, we observe significant mCherry fluorescence that
uniformly covers the cell surface (Figure 5c). This work

Figure 4. SpyCatcher protein fusions covalently bind to RsaA-SpyTag with variable occupancy according to the SpyTag location. (a) Flow
cytometry histograms of RFP fluorescence per cell for strains expressing wild-type RsaA (black) and RsaA-SpyTag (colored lines) incubated with
SpyCatcher-mRFP1 for 1 h. Baselines are offset for clarity. All eight strains displaying RsaA-SpyTag show an increase in the intensity of RFP
fluorescence over the negative control with their intensity varying based on where SpyTag is inserted within RsaA. (b) SDS-PAGE of whole cell
lysates from the rsaA467:SpyTag strain incubated for 24 h without (lane 2) and with (lane 3) SpyCatcher-mRFP1 protein. Appearance of a higher
molecular weight band only in the reaction containing SpyCatcher-mRFP1 indicates covalent binding to RsaA-SpyTag.

Table 1. Normalized and Absolute Levels of SpyCatcher-mRFP1 Ligation

location of SpyTag
insertion

absolute intensity of bound SpyCatcher-mRFP1,
Iloc (mean ± SEM)

relative SpyCatcher-mRFP1 binding,
Iloc, rel (mean ± SEM)

percentage of RsaA-SpyTag covalently modified (%),
Ploc (percentage, SEM)

277 373.9 ± 3.6 × 10−01 0.43 ± 5.5 × 10−04 9.9 ± 2.4

353 606.8 ± 8.5 × 10−01 0.70 ± 1.1 × 10−03 16.0 ± 4.9

467 871.6 ± 7.3 × 10−01 1.00 ± 1.2 × 10−03 23.0 ± 2.0

485 170.3 ± 2.3 × 10−01 0.20 ± 3.2 × 10−04 4.5 ± 1.3

622 778.1 ± 8.6 × 10−01 0.89 ± 1.2 × 10−03 20.5 ± 5.4

690 316.3 ± 3.3 × 10−01 0.36 ± 4.9 × 10−04 8.3 ± 2.1

723 536.0 ± 4.8 × 10−01 0.61 ± 7.5 × 10−04 14.1 ± 3.3

944 668.9 ± 6.1 × 10−01 0.77 ± 9.6 × 10−04 17.6 ± 4.2
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indicates that the engineered RsaA lattice can assemble
polymeric materials to the cell surface (Figure 5).
To explore the diversity of structures that can be created at

the cell surface using SpyCatcher-SpyTag ligation, we tested
the capacity of engineered bacteria to conjugate CdSe/ZnS
semiconductor quantum dots (QDs).46,47 SpyCatcher-func-
tionalized QDs were generated through attachment of a
hetero-bifunctional PEG linker molecule to an amphiphilic
polymer encapsulating the QD surface. Subsequent incubation
with SpyCatcher-Ser35Cys single cysteine mutant protein
yielded QDs with surface-displayed SpyCatcher protein. We
incubated PEGylated QDs and SpyCatcher-conjugated QDs
(see Supporting Information) with wild-type and rsaA690:S-
pyTag strains, performed a wash, and visualized individual cells
via confocal microscopy. There is significant QD fluorescence
along the cell body in samples containing SpyCatcher-QDs and
the engineered strain, while there is no significant fluorescence
with the wild-type strain (Figure 6) or the PEGylated QDs.
This demonstrates that hard nanomaterials can also be
specifically attached to the engineered RsaA lattice.
Nanoparticle Attachment Does Not Affect Cell

Viability. Finally, we explored the effect of coating the surface
of the C. crescentus cells with nanoparticles on their viability, as
this is key to creating hybrid living materials that remain
metabolically active over time.48 We incubated control wild-
type (CB15NΔsapA) and engineered rsaA467:SpyTag cells
with or without SpyCatcher-QDs for 2 weeks, sampled the
cultures periodically, and enumerated the living cells (CFU/
mL). We also imaged the samples using confocal microscopy
to determine whether the SpyCatcher-QDs remained stably
bound to the engineered S-layer. Under all conditions, the total
cell numbers decrease over the two week duration, which is
expected since nutrients are not replenished (Figure 7a). More
importantly, the number of viable cells in the wild-type culture

without QDs is not significantly different from the wild-type
with unbound SpyCatcher-QDs, the rsaA467:SpyTag culture
without QDs, or the rsaA467:SpyTag culture with SpyCatcher-
QDs (Figure 7a). These results indicate that neither unbound
SpyCatcher-QDs in the wild-type culture nor surface-bound
SpyCatcher-QDs on the engineered cells affect viability, and

Figure 5. Engineered RsaA assembles biopolymers on the C. crescentus
cell surface. (a−c) Confocal fluorescence images of C. crescentus cells
incubated with ELP-mCherry fusion proteins visualized in DAPI and
mCherry channels. Cells expressing (a) wild-type RsaA incubated
with SpyCatcher-ELP-mCherry and (b) expressing RsaA690:SpyTag
incubated with ELP-mCherry. Only the rsaA690:SpyTag strain
incubated with SpyCatcher-ELP-mCherry (c) shows signal along
the cell membrane in the mCherry channel, indicating specific
assembly on the cell surface. Scale bar = 5 μm.

Figure 6. Engineered RsaA assembles inorganic nanocrystals on the
C. crescentus cell surface. (a−c) Interference reflection microscopy
(IRM) and confocal fluorescence images of C. crescentus cells
incubated with QDs. Cells expressing (a) wild-type RsaA incubated
with SpyCatcher-QDs and (b) expressing RsaA690:SpyTag incubated
with PEG-QDs. (c) Cells expressing RsaA690:SpyTag incubated with
SpyCatcher-QDs show QD fluorescence along the cell surface,
indicating specific assembly of SpyCatcher-QDs by the engineered
strain. Scale bar = 5 μm.

Figure 7. Engineered C. crescentus with ligated SpyCatcher-QDs
remain viable over 2 weeks. (a) Viability of CB15NΔsapA (wild-type)
and CB15NΔsapA rsaA467:SpyTag strains incubated without or with
SpyCatcher-QDs (+ QD) was assessed by quantifying colony forming
units/mL (CFU/mL) as described in the Methods section. Data
shown represent mean ± standard deviation of three replicates per
condition. The CFU/mL of cells with SpyCatcher-QDs is very similar
to that of cells grown without SpyCatcher-QDs. (b) Confocal images
of rsaA467:Spytag + SpyCatcherQD show QD fluorescence over the
two week duration indicating sustained attachment of SpyCatcher-
QDs to the engineered strain. Scale bar = 3 μm.
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there is no notable difference in viability between the wild-type
and engineered cells. One possible interpretation of this cell
viability is that the S-layer acts as an effective barrier,
preventing disruption of the outer cell membrane, fulfilling
one of its key evolutionary roles.49−51 Imaging reveals that
SpyCatcher-QDs remain attached to the cell surface over 2
weeks (Figure 7B) and nonspecific binding of SpyCatcher-
QDs on the surface of wild-type cells is not observed (Figure
S5), once again highlighting the specificity and stability of the
SpyTag-SpyCatcher system on S-layers. We do note that QD
emission decreases over the course of the experiment, which
may be due to nonspecific cleavage of bonds between RsaA
and the QD, turnover of the RsaA protein, or slow QD
quenching in biological media. SpyCatcher-QDs incubated
alone in M2G buffer show a ca. 30% decrease in emission over
14 days (Figure S6), which suggests QD quenching is the likely
cause of observed emission decrease in QD-RsaA conjugates.
Nonetheless, these results demonstrate that engineered RsaA
can be used to generate stable living materials that require cells
to remain viable for extended periods of time.
Advancement of RsaA S-Layer as a Platform for

Controlled Material Assembly. In summary, we show that
the S-layer of C. crescentus, RsaA, is a versatile platform for cell
surface attachment of proteins, biopolymers, and inorganic
materials when combined with the Spy conjugation system. We
demonstrate that eight sites are available for peptide insertion
within RsaA and that the insertion location tunes the
attachment density. Ligation to the RsaA-SpyTag lattice is
highly specific and covalent, with the absolute level of density
of RsaA-displayed proteins reaching ∼25% of the total RsaA,
or 1 site per 288 nm2, which is the highest density of cell-
surface displayed proteins reported to our knowledge.
Moreover, we show that QD-C. crescentus composites
assembled via RsaA-SpyTag form engineered living materials
that persist for at least 2 weeks. In the following, we discuss
possible reasons for the site-dependent variation in attachment
density, specific applications for cell-display using the RsaA
platform, and the broader opportunities it opens in the area of
ELMs.
We observed that the relative ligation efficiency varies ∼5-

fold across the eight permissive sites, with rsaA467:SpyTag
affording the densest array of SpyCatcher-mRFP1. This
variance is not due to protein expression levels, which do
not vary significantly between strains (Figure 2c), and is
unlikely to be caused by disruption to the S-layer lattice as our
findings indicate that SpyTag insertions to not alter the
structure on the nanometer scale (Figure 1b−d) but may be
due to solvent-accessibility within the RsaA, steric clashes
between sites on nearby RsaA monomers, or a combination of
these factors. The most efficient binding site, RsaA467:SpyTag,
is in an unstructured loop in a gap in the hexamer (Figure 2a),
potentially giving more freedom for the SpyTag peptide to
access a SpyCatcher-fusion. Since RsaA485:SpyTag and
RsaA690:SpyTag are in an α helix and a calcium-binding
pocket, respectively (Figure 2a), these insertions could be
causing local disruption in structure, leading to the lower
occupancy we observe (Table 1). Additionally, position 277 is
located near the pore of the hexamer, resulting in the five
neighboring positions being between 1.4 and 2.8 nm away.
Since the entire engineered linkage to mRFP1, i.e., (GSSG)4-
SpyTag-SpyCatcher-mRFP1, is roughly 2.9 by 2.5 by 15 nm in
dimensions, it is likely that some of the neighboring sites are

sterically inaccessible once a single mRFP1 is bound. Further
investigation will be required to untangle these possibilities.

Engineered C. crescentus Opens New Possibilities for
Hierarchical Assembly of Hybrid Living Materials. The
engineered S-layer system described here offers immediate
opportunities for engineering enzyme cascades on cells and
encapsulation in hydrogels. By eliminating the need for direct
fusion of enzymes to the S-layer, we avoid potential enzyme
activity inhibition caused by expressing the protein in tandem
with the S-layer monomer.52 In addition, the varied ligation
density and SpyTag spatial positioning engineered in our
strains provides flexibility to attach enzymes in the most ideal
pattern. As another potential application, bacterial cells are
frequently encapsulated in hydrogels to enhance their stability
as probiotics,53 as adjuvants to plant growth in agriculture,54 or
as biostimulants in wastewater treatment.55 Typically no
specific adherence mechanism is engineered between bacterial
cells and the hydrogel, and many factors can affect gel
stiffness,56 including number or type of cells and media
content. By using direct attachments between the S-layer and
hydrogel polymers, we may achieve more stability and unique
mechanical properties due to the sheer number of covalent
cross-links the between the engineered S-layer and the
hydrogel matrix.
Our work more broadly introduces several foundational

aspects useful for engineering ELMs. First, our results (Figures
3, 5, 6) suggest any material on which SpyCatcher can be
conjugated can be self-assembled on the modified 2D S-layer
lattice, thus avoiding the labor-intensive reengineering of RsaA
with peptides designed for specific targets. This makes our
strain a versatile starting point for building an array of ELMs.
Second, while ELMs with impressive functionality have been
assembled via 1D curli fiber proteins and the type III secretion
apparatus,57 the 2D structure of the S-layer lattice yields
another dimension of spatial control. Because hierarchical
ordering underlies the exceptional physical properties of many
natural biocomposites, the ability to regulate spacing of
different components in multiple dimensions is key to
rationally designing predictable ELMs. Third, we can attach
materials densely to the cell surface; here we demonstrate
ligation of ∼11 000 copies of a protein to the C. crescentus cell
surface, or 1 attached protein per 288 nm2. This is the highest
density of surface arrayed proteins reported on a bacterium to
our knowledge. Being able to access high densities is important
because it ensures well-ordered structures while the ability to
tune density may result in control over material properties.
Lastly, the combined robustness of the covalent SpyCatcher-
SpyTag system, the RsaA S-layer, and C. crescentus enables
long-term persistence of the assembled structure and cell
viability in an ELM even under low aeration and nutrient
conditions. We envision this robustness will enable ELMs that
can function in nutrient-poor environments with minimal
intervention. Thus, the RsaA platform described here offers a
modular, stable platform for assembling materials densely in
2D that opens new possibilities for constructing ELMs.

■ CONCLUSIONS
In closing, hierarchically ordered hybrid materials could allow
for the rational design of materials with the emergent
properties seen in natural materials. A bottom-up approach
toward these engineered living materials is controlled attach-
ment of materials to the cell surface in 2D, which we achieved
by engineering the C. crescentus S-layer with the Spy
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conjugation system for specific attachment of hard, soft, and
biological materials at controllable densities. This modular base
could lead to higher ordered materials that combine the
functions of inorganic materials with the self-assembly and self-
healing properties of living cells for applications that span
medicine, infrastructure, and devices.

■ METHODS
Strains. All strains used in this study are listed in Table S1.

C. crescentus strains were grown in PYE media (0.2% peptone,
0.1% yeast extract, 1 mM MgSO4, 0.5 mM CaCl2) at 30 °C
with aeration. E. coli strains were grown in LB media (1%
tryptone, 0.5% yeast extract, 1% NaCl) at 37 °C with aeration.
When required, antibiotics were included at the following
concentrations: For E. coli, 50 μg/mL ampicillin, 20 μg/mL
chloramphenicol, 30 μg/mL kanamycin. For C. crescentus, 10
μg/mL (liquid) or 50 mg/mL (plate) ampicillin, 2 μg/mL
(liquid) or 1 μg/mL (plate) chloramphenicol, 5 μg/mL
(liquid) or 25 μg/mL (plate) kanamycin. Diaminopimelic acid
(DAP) was supplemented at 300 μM and sucrose at 3% w/v
for conjugation and recombination methods, respectively. All
chemicals were purchased from Sigma-Aldrich or VWR.
Plasmid Construction. A list of all strains, plasmids, and

primers used in this study is available in Tables S1−S3. Details
on construction of p4B expression plasmids, pNPTS138
integration plasmids, and protein purification plasmids can
be found in Supporting Information. Plasmids were introduced
to E. coli using standard transformation techniques with
chemically competent or electrocompetent cells, and to
C. crescentus using conjugation via E. coli strain WM3064.
Genome Engineering of C. crescentus. The (GGSG)4-

SpyTag-(GGSG)4 sequence was integrated into the genomic
copy of rsaA using a 2-step recombination technique and
sucrose counterselection. The pNPTS-rsaA(SpyTag) integra-
tion plasmids were conjugated into C. crescentus CB15NΔsap
and plated on PYE with kanamycin to select for integration of
the plasmid. Successful integrants were incubated in liquid
media overnight and plated on PYE supplemented with 3%
(w/v) sucrose to select for excision of the plasmid and sacB
gene, leaving the SpyTag sequence behind. Colonies were then
spotted on PYE with kanamycin plates to confirm loss of
plasmid-borne kanamycin gene. Integration of the SpyTag
sequence and removal of the sacB gene was confirmed by
colony PCR with OneTaq Hot Start Quick-Load 2× Master
Mix with GC buffer (New England BioLabs) using a
Touchdown thermocycling protocol with an annealing
temperature ranging from 72°-62 °C, decreasing 1° per cycle.
Successful RsaA-SpyTag protein expression was confirmed

by band shift in whole cell lysate in Laemmli buffer and 0.05%
2-mercaptoethanol on a BioRad Criterion Stain-free 4−20%
SDS-PAGE. The gel was UV-activated for 5 min before
imaging on a ProteinSimple FluorChem E system. As RsaA
was migrating higher than expected, Western blot was
performed for confirmation. A Bio-Rad Trans-Blot Turbo
system with nitrocellulose membrane was used to transfer
protein from the SDS-PAGE gel and the membrane incubated
in Thermo-Fisher SuperBlock buffer for 1 h. The protein of
interest was first labeled during a 30 min incubation with
Rabbit-C Terminal Anti-RsaA polyclonal antibody58 (Courtesy
of the Smit lab; 1:5000 in TBST, Tris-Buffered Saline with
0.1−0.05% Tween-20), followed by another 30 min incubation
with Goat-Anti Rabbit-HRP (Sigma-Aldrich; 1:5000 in
TBST). BioRad Precision Plus Protein Standards (Bio-Rad)

were labeled with Precision Protein StrepTactin-HRP
conjugate antibodies (Bio-Rad; 1:5000 in TBST). HRP
fluorescence was activated with Thermo-Fisher SuperSignal
West Pico Chemiluminescent Substrate and imaged in
chemiluminescent mode. TBST washes were performed
between each incubation step. The relative molecular weight
of bands quantified against the BioRad Precision Plus Protein
Standards using ProteinSimple’s AlphaView software.

Monitoring Ligation of SpyCatcher-Fusions to C. cres-
centus. For flow cytometry experiments, cells were grown at
25 °C to mid log phase and cells containing the pBXMCS-2-
RFP plasmid were induced for 1−2 h with 0.03% xylose to
serve as a positive control. A population of ∼108 cells
(determined by optical density measurement where OD600 of
0.05 contains 108 cells) were harvested by centrifugation at
8000 RCF for 5−10 min and resuspended in PBS + 0.5 mM
CaCl2. Using the cell density as determined by OD600 and
assuming 4.5 × 104 RsaA monomers/cell,33 we added
SpyCatcher-mRPF1 to a final molar ratio of 1:20 RsaA protein
to SpyCatcher-mRFP1. The reaction was then incubated for 1
h at room temperature with rotation. All samples were
protected from light with aluminum foil during the procedure
and washed twice with 1 mL of Phosphate-Buffered Saline
(PBS) + 0.5 mM CaCl2 buffer prior to imaging to remove any
unbound protein. Cells were diluted to 106 cells/mL and
analyzed on a BD LSR Fortessa. Data on forward scatter (area
and height), side scatter, and PE Texas Red (561 mm laser,
600 LP 610/20 filter) was collected. A total of 150 000 events
for each strain was measured over three experiments.
For each strain, the total population was gated using scatter

measurements to remove events corresponding to aggregates
and debris. All events from the resulting main population were
used to create histograms of the fluorescence intensity of
bound SpyCatcher-mRPF1 for each strain expressing RsaA
(wild-type control) or RsaA-SpyTag (Figure 4A). These
fluorescence intensity values were also used to calculate the
absolute intensity of bound of SpyCatcher-mRFP1 for RsaA-
SpyTag insertion location (Iloc) shown in Table 1. The relative
SpyCatcher-mRFP1 binding (Iloc,rel) was calculated by normal-
izing (Iloc) by the absolute intensity at location 467:

=I
I
Iloc,rel

loc

467 (1)

For confocal microscopy, cells were grown to mid log phase
and ∼108 cells (again determined by OD600 measurement)
harvested by centrifugation at 8000 RCF for 5−10 min. They
were then resuspended in PBS + 0.5 mM CaCl2 and, as in the
flow cytometry experiments, a 1:20 ratio of RsaA protein to
fluorescent probe, i.e., mRFP1, SpyCatcher-mRFP1, SpyCatch-
er-ELP-mCherry, or ELP-mCherry was added. The reaction
was then incubated for 1 h at room temperature with rotation
for the mRFP1 probes and 24 h at 4 °C for the ELP-mCherry
probes. 2 × 107 cells were incubated with 100 nM QDs for 24
h at 4 °C with rotation. All samples were protected from light
with aluminum foil during the procedure and washed twice
with 1 mL of buffer prior to imaging to remove any unbound
protein. After the wash, cells with fluorescent probes were
stained with 1 μM of DAPI (4′,6-diamidino-2-phenylindole).
All samples were spotted onto agarose pads (1.5% w/v agarose
in distilled water) and mounted between glass slides and glass
coverslips. Immersol 518F immersion oil with a refractive
index of 1.518 was placed between the sample and the 100× oil
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immersion objective (Plan-Apochromat, 1.40 NA) prior to
imaging. Fluorescence and IRM images were collected using a
Zeiss LSM 710 confocal microscope (Carl Zeiss Micro
Imaging, Thornwood, NY) with the Zen Black software. For
fluorescent imaging, a 561 nm laser was used for RFP/
mCherry excitation and 405 nm for DAPI. For IRM, a 514 nm
laser was reflected into the sample using a mBST80/R20 plate,
and then the reflected light was collected and imaged onto the
detector. Images were false colored and brightness/contrast
adjusted using ImageJ.59

To quantify the binding of SpyCatcher-mRFP1 to RsaA-
SpyTag, the same procedure was used as above except with a
1:2 ratio of RsaA to RFP was used and incubation for 24 h at 4
°C with rotation. The reaction was visualized on a BioRad
Criterion Stain-free 7.5% SDS-PAGE in Laemmli buffer with
0.05% 2-mercaptoethanol and the molecular weight of bands
quantified against BioRad Precision Plus Protein Standards
using Protein Simple’s AlphaView software. The measurements
were made in triplicate on two separate occasions, and all six
results were averaged for the final percentage reported. For
each experiment, the density of bands was measured using
ImageJ.59 Background subtraction was applied to the entire
image, and the background-subtracted integrated density
within an equal area was determined for each RsaA-SpyTag
protein band. The integrated density of the bands from
triplicate reactions lacking SpyCatcher were averaged to give
Iunreact. To calculate the percentage of RsaA467:SpyTag ligated
to SpyCatcher-mRFP1 for each experiment, we calculated the
difference in density between each RsaA-SpyTag band from
reactions with SpyCatcher-mRFP1 (Ireact,1, Ireact,2, Ireact,3)
relative to the unreacted control (Iunreact) and normalized this
value by the unreacted control (Iunreact):

∑=
−

=

P
I I

I
1
3 i

i
467

1

3
unreact react,

unreact (2)

The reported value (P467) is an average of the two experiments.
We then used the absolute percentage of ligation at location
467 (P467) and the relative binding of SpyCatcher-mRFP1 at
each location to calculate the percentage of ligation for all the
insertion positions.

= ×P I Ploc loc,rel 467 (3)

The values of Ploc are shown in Table 1.
Cell Viability Assay. Cell viability in the presence of

SpyCatcher-QDs was determined using the viable plate count
method. Approximately 4 × 108 mid log phase cells (day 0)
(cell number determined by OD600 measurement) were first
incubated with 100 nM SpyCatcher-QDs in M2G buffer (1×
M2 salts without NH4Cl to prevent extensive cell growth, 1
mM MgSO4, 0.5 mM CaCl2, 2% glucose) for 24 h at 4 °C with
rotation to allow QD ligation to the cell surface. Post binding
(day 1), the cultures were transferred to a 25 °C humidified
incubator and left stationary for 2 weeks. Cultures were
sampled at different time points (days 2, 7, and 14), serially
diluted, and titered on PYE agar plates (0.2% peptone, 0.1%
yeast extract, 1 mM MgSO4, 0.5 mM CaCl2, 1.5% agar), which
were incubated at 30 °C for 2 days. Colonies on the plates
were counted and cell viability was quantified by enumeration
of Colony Forming Units/mL as follows:

= ×CFU/mL number of colonies/dilution volume plated

(mL)

At the specified time points, 30 μL of culture was removed
from the tube and centrifuged at 16 000g for 1 min. The
supernatant was discarded and the cells were resuspended in 3
μL M2G buffer. A 1.5% agarose pad was prepared on a 25 × 75
mm glass slide and 0.6 μL of the resuspended culture was
placed on it. An 18 × 18 mm coverslip was then placed on the
pad, and the trapped cells were imaged and processed using as
outlined above.

In Situ Atomic Force Microscope (AFM) Imaging. Mid
log cultures of C. crescentus JS4038 carrying p4B-rsaA600, p4B-
rsaA600467: (GGSG)4-spytag-(GGSG)4, or p4B-rsaA600690:
(GGSG)4-spytag-(GGSG)4, were harvested at 8000 rpm for
5 min and the pellet resuspended in PBS + 5 mM CaCl2 buffer.
The JS4038 strain is defective in capsular polysaccharide
synthesis. This is necessary for AFM imaging as the capsular
polysaccharide layer obscures the S-layer lattice. The cells were
washed three times to remove any debris. 100 μL of the
washed cell culture was applied to a poly-L-lysine coated glass
coverslip (12 mm cover glasses, BioCoat from VWR), which
was premounted onto a metal puck. The sample was incubated
at room temperature for 1 h to allow sufficient cell attachment,
and then 1 mL of PBS + 5 mM CaCl2 buffer was used to wash
away unbound cells from the glass surface. 50 μL of PBS + 5
mM CaCl2 buffer was added to the resulting glass surface, and
the sample was transferred onto the sample stage for imaging.
In situ AFM imaging was performed on a Bruker Multimode

AFM using PeakForce Tapping mode in liquid. An Olympus
Biolever-mini cantilever (BL-AC40TS) was used for high
resolution imaging. The following set of parameters was
normally employed to ensure the best image quality: 0.2 to 0.5
Hz scanning rate, 512 × 512 scanning lines, 15 nm peak force
amplitude, and 50 to 100 pN peak force set point.
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Sector: Transforming Cellular Factories with Synthetic Biology 

Use Case for Cells as Factories: Temporally and Spatially Controlled Production of Structural Materials 

End Product: Various materials produced and exported by cells on queue 

Organism(s) if applicable: Microbial cultures including archaea and extremophiles, mixed cultures 

The rapid pace of increasing capabilities for bioengineering and synthetic biology has enabled dramatic 
improvements in our ability to design microorganisms as microscale factories to efficiently produce high 
value small molecules including pharmaceuticals, chemicals and commodity precursors.  The value of 
capabilities for robust synthesis of diverse small molecules, including molecules not found in nature, is 
significant and warrants continued development.  However, the synthetic capabilities of biology far 
exceed small molecules.  Natural biological systems produce a dizzying array of higher order molecular 
assemblies at the mesoscale and beyond, often “cheating” thermodynamics to access disfavored 
material phases that require extreme processing conditions or are completely inaccessible via traditional 
materials synthesis routes.  If we can harness the synthetic capabilities of biology to produce complex 
molecular assemblies and materials, we can revolutionize the production of structural materials.  
Engineered biological systems could be designed in which a single organism is programmed to produce a 
variety of products, each dependent on a specific input.  This would enable a tunable materials synthesis 
platform in which different inputs drive the production of different output materials. 

Engineered microbes have potential to produce mesoscale materials of desired function beyond 
molecules. Microbes already produce structures such as carboxysomes. Once infected by phages, 
microbes produce virus or virus-like particles that could be potentially be co-opted to perform novel 
structural function. Exported mesoscale materials maybe engineered to interface with non-biological 
materials such as synthetic polymers, metals, minerals, semi-conductors, or carbonaceous materials. 
Engineered microbes themselves may be able to serve as a structural component of high-ordered 
material or devices beyond serving as biochemical factories. Significant effort is underway to engineer 
microbial ecosystem that can produce specific molecules and compounds but the challenges remain in 
using cells to produce mesoscale/supramolecular structures that may lead to direct interfacing with 
abiotic materials in temporally and spatially controlled manner. Phenotypes borrowed from 
extremophiles (such as chemolithotrophy, biostasis) may endow engineered microbes to perform new 
chemistry on queue while minimizing the loss of resources to biomass once optimal population for 
production has been achieved. 

Desired outcome(s) that stretch current capabilities 

• Tools for temporal control of cellular production 
• Engineered microbes that can produce and export variety of structural materials (e.g. 

magnetosomes, gas vesicles, virus-like particles) 
• Engineered extremophiles that are genetically facile or engineered lab strains to withstand 

extreme conditions  
• Tools for controlling multi-step reactions using co-cultures or community of microbes 
• Tools for spatial control of microbes 

 



Sector: Transforming Cellular Factories with Synthetic Biology 

Use Case for Cells as Factories: Temporally and Spatially Controlled Production of Structural Materials 
using Artificial Cells and Cell Free Systems 

End Product: Structural materials produced via temporally and spatially controlled biological synthesis 
of mesoscale molecular structures  

Organism(s) if applicable: Various microbial organisms including archaea and extremophiles, mixed 
cultures, cell-free systems produced from these organisms, or artificial cells assembled from the 
bottom-up with isolated components from these organisms 

The rapid pace of increasing capabilities for bioengineering and synthetic biology has enabled dramatic 
improvements in our ability to design microorganisms as microscale factories to efficiently produce high 
value small molecules. However, the synthetic capabilities of biology far exceed small molecules.  While 
the engineering of living cells has already expanded our manufacturing capabilities and holds promise to 
revolutionize how we produce molecules and materials that impact multiple sectors spanning from 
medicine to textiles, living cells are inherently complex structures that have evolved to achieve 
outcomes that benefit the cell (reproduction, protection against threats, etc.).  Engineering living cells 
has proven exceedingly difficult because it requires the modification of a system that is not fully 
understood, that is extraordinarily complex, that can function autonomously, that can exchange 
material with its environment, and that can evolve in response to external influences or threats.  Living 
cells are also optimized to function in their natural environmental niche and are often unable to 
withstand dramatic shifts in temperature or environmental chemistry. 

Artificial cells, non-living structures that are compatible with biological cellular machinery, or cell-free 
systems, either cell extracts or a collection of purified proteins/biomolecules, could provide a robust, 
predictable, non-autonomous platform for the execution of human-designed biological programs to 
realize novel material synthesis capabilities.  Artificial cells and cell-free systems could serve as non-
biological reaction platforms that (i) sequester human-designed biological programs and the molecules 
needed to execute these programs, (ii) execute programs only when triggered, with no spurious activity 
and high signal to noise, (iii) can be stored in an inactive state for extended periods of time with highly 
reliable “re-boot” when needed, and (iv) are able to execute their programs over a wide range of 
environmental conditions. 

For synthesis of complex biomolecular assemblies and mesoscale materials, artificial cells and cell-free 
systems may provide distinct advantages over living cells as manufacturing platforms.  These systems 
may more readily accommodate production of complexes and materials of increased physical 
dimensions, as cell-free systems have no external bounds and the physical scale of artificial cells could 
be tuned based on the desired product.  Moreover, concerns related to cell toxicity and cellular resource 
allocation are dramatically simplified in artificial cell and cell-free systems.  

Desired outcome(s) that stretch current capabilities 

• Integration of discrete artificial cell functions into  coordinated artificial cell platforms 
• Optimization of cell-free systems to enable a robust, versatile manufacturing capability for 

mesoscale molecular structures and materials. 
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Cells in tissues or biofilms communicate with one another through chemical and mechanical

signals to coordinate collective behaviors. Non-living cell mimics provide simplified models of

natural systems; however, it has remained challenging to implement communication cap-

abilities comparable to living cells. Here we present a porous artificial cell-mimic containing a

nucleus-like DNA-hydrogel compartment that is able to express and display proteins, and

communicate with neighboring cell-mimics through diffusive protein signals. We show that

communication between cell-mimics allows distribution of tasks, quorum sensing, and cel-

lular differentiation according to local environment. Cell-mimics can be manufactured in large

quantities, easily stored, chemically modified, and spatially organized into diffusively con-

nected tissue-like arrangements, offering a means for studying communication in large

ensembles of artificial cells.
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In communities of single-celled and multicellular organisms,
cell–cell communication enables cells to organize in space,
distribute tasks, and to coordinate collective responses. Syn-

thetic biologists have engineered living, communicating cells to
form cellular patterns1,2 and synchronize gene expression3 but
living systems are inherently challenging to study and engineer.
Chemically constructed cell-mimics, as non-living, biochemically
simplified and engineerable systems, could serve as models to
study mechanisms of pattern formation and collective responses,
and lead to the development of novel sensors and self-organizing
materials. Important biochemical processes like protein
synthesis4,5, DNA replication6, metabolism7, and cytoskeletal
functions8 have been reconstituted and studied in single synthetic
cell-mimics. While biochemical reactions in microfluidic cham-
bers9–11, in droplets12,13 and on beads14 can emulate aspects of
intercellular communication, studies on systems that structurally
resemble natural cells with their semi-permeable membranes
have been limited in scope by the availability of communication
channels and assembly methods. Addressing the scalable assem-
bly of artificial cells, microfluidic methods have been developed to
mass-produce highly homogeneous populations of phospholipid
vesicles encapsulating active biomolecules15–18. Recent studies
have demonstrated communication between synthetic micro-
compartments to induce gene expression5,13,19,20 or chemical
reactions21–23 using small molecule signals. To implement com-
munication, signaling molecules must travel between compart-
ments. Some small molecules diffuse freely between
compartments5,13,19–22, phospholipid vesicles can be permeabi-
lized by inserting alpha-hemolysin pores5,23, and other synthetic
microcompartments such as gel-shell beads24, polymersomes21,
proteinosomes23, and colloidosomes22 can be assembled with
permeable membranes. Signaling molecules for communication
between artificial cell-mimics have so far been limited to small
molecules. In contrast, signaling in multicellular organisms often
involves secretion of proteins serving as growth factors or mor-
phogens that provide cells with the information they need to
develop into functional tissues25.

Here, we aim to expand the communication capabilities of
artificial cells by developing a cellular mimic that produces and
releases diffusive protein signals that travel in and get interpreted
by large populations of cell-mimics. We describe the microfluidic
production of cell-mimics with a porous polymer membrane
containing an artificial hydrogel compartment, which resembles a
eukaryotic cell’s nucleus in that it contains the cell-mimics’
genetic material for protein synthesis and can sequester tran-
scription factors. Cell-mimics are able to communicate through
diffusive protein signals, activate gene expression in neighboring
cell-mimics, and display collective responses to cell-mimic den-
sity similar to bacterial quorum sensing.

Results
Porous cell-mimics containing artificial nuclei. We prepared
porous cell-mimics capable of gene expression and communica-
tion via diffusive protein signals using a microfluidic method
(Fig. 1a, b). First, water-in-oil-in-water double emulsion droplets
were formed in a polydimethylsiloxane (PDMS) device (Supple-
mentary Figure 1, Supplementary Movie 1). The droplets had a
middle organic phase consisting of a 1-decanol and acrylate
monomer solution and encapsulated DNA and clay minerals.
Second, double emulsion droplets were collected and polymerized
using UV light, inducing a phase separation of the inert 1-decanol
to form porous microcapsules26. Third, following polymerization,
we simultaneously permeabilized the polymer membrane and
induced formation of a clay-hydrogel in their interior by adding a
solution of ethanol and HEPES buffer. Membrane pores had
diameters of 200–300 nm (Fig. 1a, Supplementary Figure 2).
Polymer membranes were permeable to macromolecules up to 2
MDa but excluded 220 nm nanoparticles from about 90% of the
microcapsules (Supplementary Figure 3). Like in similarly pre-
pared porous microcapsules26,27, polymer membranes were
mechanically stable and rigid. Microcapsules could be centrifuged
at high speeds, and only broke under high stress from a razor
blade (Supplementary Figure 2). The encapsulated clay minerals
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had a large capacity for binding and capturing DNA from solu-
tion, and retained DNA in the clay-DNA hydrogel that formed
after electrolyte addition (Supplementary Figure 4)28. During
permeabilization of the polymer membrane with a solution of
HEPES buffer and ethanol, the encapsulated clay minerals and
DNA condensed into a round hydrogel structure in the micro-
capsules’ interior that is analogous to the cell nucleus (Fig. 1c). In
at least 95% of microcapsules, only one clay-DNA hydrogel
nucleus formed that measured approximately half of the micro-
capsules’ diameter in size. In solution, not templated by a sur-
rounding microcapsule, clay minerals form irregularly shaped
and sized hydrogel particles (Supplementary Figure 5). DNA
adsorbs to the surfaces of clay minerals through electrostatic
interactions, cation bridges, hydrogen bonding and ligand
exchange28–30. Clay-DNA hydrogel nuclei had a porous structure,
allowing macromolecules of up to 500 kDa to diffuse into the
hydrogel while 2000 kDa dextran was partially excluded from
hydrogel nuclei (Supplementary Figure 3). The permeability of
the hydrogel nuclei to large macromolecules suggested that the
DNA would be accessible to the transcription machinery. As a
final step in the preparation of cell-mimics, we passivated their
polymer membrane with polyethylene glycol (PEG) to prevent
non-specific binding of proteins (Supplementary Figure 6).

Gene expression in cell-mimics. The porous structure of the
polymer membrane allowed supply of cell-free transcription and
translation (TX-TL) reagents from the outside to induce synthesis
of proteins encoded by the DNA in the cell-mimics’ hydrogel
nuclei. Even ribosomes, the largest components of TX-TL
reagents, were able to diffuse into cell-mimics through their
porous membranes (Supplementary Figure 7). To capture protein
products within cell-mimics, we expressed a fusion protein of the
tetracycline repressor TetR and sfGFP (TetR-sfGFP) as a fluor-
escent reporter. TetR binds the tet operator sequence (tetO). A co-
encapsulated 240 × tetO array plasmid localized the reporter
protein to the hydrogel nucleus (Fig. 1c), which increased in
fluorescence after TX-TL addition (Fig. 1d, Supplementary
Movie 2). Localization of TetR-sfGFP to the hydrogel nucleus was
reversible and due to the specific interaction of TetR with tetO
sites. Addition of anhydrotetracyline, which prevents TetR from
binding DNA, caused a substantial unbinding of TetR-sfGFP.
Without the tetO plasmid, fluorescence increased in solution but
not in hydrogel nuclei (Supplementary Figure 8). In tetR-sfGFP/
tetO cell-mimics, fluorescence increased substantially in almost all
cell-mimics (Fig. 1e). Variations in intensity were likely due to
differences in DNA capture during formation of hydrogel nuclei
(Supplementary Fig. 5). Cell-mimics retained full expression
capabilities after 2 years of storage, and separate batches showed
comparable expression levels and dynamics (Supplementary
Figure 9).

Protein exchange between cell-mimics. Due to their porosity,
cell-mimics likely released mRNA and protein products that
diffused into neighboring cell-mimics. To demonstrate that
neighboring cell-mimics exchanged protein products with each
other, we prepared sender cell-mimics, fluorescently labeled in
their polymeric membranes and containing the tetR-sfGFP
expression plasmid, and receiver cell-mimics containing the tetO
array plasmid to capture the reporter protein. When both cell-
mimic types were mixed at approximately a one to one ratio, only
the nuclei of the receiver cell-mimics increased in fluorescence
(Fig. 2a). To explore how far TetR-sfGFP protein originating
from a given sender cell-mimic travelled, we used a large excess of
receivers and spread them densely into a circular 3.5 mm wide
colony. Under these conditions, TetR-sfGFP spread from sender

to surrounding receiver cell-mimics but stayed localized in pat-
ches around individual sender cell-mimics (Fig. 2b, Supplemen-
tary Figure 10a). This pattern of captured protein around source
cell-mimics persisted for 24 h after expression ended, demon-
strating that TetR-sfGFP was essentially trapped in the hydrogel
nuclei once it was bound in the high local density of tetO sites.
Assuming free diffusion, we would expect protein gradients to
have disappeared within 5 h in similar geometries (Supplemen-
tary Figure 10b–d).

To test the preference of a given cell-mimic to bind protein
originating from its own DNA, we prepared tetR-mCherry / tetO
cell-mimics that accumulated red fluorescence in their hydrogel
nuclei (Supplementary Fig. 10). When mixed with tetR-sfGFP /
tetO cell-mimics (Fig. 1c), there was essentially no difference in
relative fluorescence in either channel between the cell-mimic
types, indicating that in close proximity, neighboring cell-mimics
completely exchanged protein products (Supplementary Fig-
ure 11). While transcription occurred in the hydrogel nuclei
where DNA was localized, these results indicate that translation
was likely not localized to the cell-mimic a given mRNA
originated from. However, because mRNA lifetime in TX-TL
reagents is short, and mRNA thus has a limited diffusion range,
we expected the localization of TetR-sfGFP and TetR-mCherry to
depend strongly on distance between cell-mimics. We distributed
the two cell-mimic types in a reaction chamber so that they mixed
in the center but remained separate on either side. Cell-mimics in
the center showed mixed fluorescence while cell-mimics on the
sides fluoresced primarily in one channel (Fig. 2c), demonstrating
that locally, on the order of few cell-mimic lengths, proteins
exchanged with little hindrance by the polymer membranes,
whereas exchange of protein with distant cell-mimics was limited
by diffusion.

Communication through a diffusive transcriptional activator.
Communication in vesicle-based cell-mimics has so far been
limited to small molecule signals such as quorum sensing
molecules19,20 or IPTG and glucose, combined with membrane
pores, like alpha-hemolysin5,23. Our porous cell-mimics exchan-
ged proteins with their neighbors, suggesting they are able to
communicate with each other directly through genetic regulators.
To demonstrate this we constructed a two-stage activation cas-
cade and distributed the network into two separate cell-mimic
types. T3 RNA polymerase (T3 RNAP) served as a diffusive
signaling molecule transmitting the instruction to express a
reporter gene from activator to reporter cell-mimics. Activator
cell-mimics contained the template for the expression of T3
RNAP. Reporter cell-mimics contained the template for the T3
RNAP-driven synthesis of the TetR-sfGFP reporter as well as tetO
array plasmids to capture the reporter protein. When both cell-
mimic types were mixed, reporter cell-mimics expressed and
bound the fluorescent reporter (Fig. 3, Supplementary Movie 3),
while activator cell-mimics alone did not increase in fluorescence
(Supplementary Figure 12).

Artificial quorum sensing. We hypothesized that T3 RNAP
could serve as a soluble signaling molecule providing cell-mimics
with information about population density. Indeed, cell-mimics
containing both the activation circuit and reporter constructs
(Fig. 4a) underwent a collective response where fluorescence
accumulated in cell-mimics only at high densities. At low cell-
mimic densities, signals from the hydrogel nuclei were not
detectably different from background fluorescence (Fig. 4b). We
titrated the density of cell-mimics in a fixed volume and found a
sharp transition from off to on, which resembled bacterial
quorum sensing responses to cell density31 even though, unlike in
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bacterial quorum sensing mechanisms, the T3 activation circuit
did not contain positive feedback. The threshold cell-mimic
density at which expression of the reporter turned on was 400
cell-mimics in 4.5 µl TX-TL (Fig. 4c). Cell-mimics that

constitutively expressed the reporter (Fig. 1c) accumulated
fluorescence in their hydrogel nuclei regardless of their density
(Supplementary Figure 13). The collective response to density can
be explained by T3 RNAP release from cell-mimics. At low
densities, T3 RNAP is diluted in the comparably large volume of
the sample, while at high density a sufficient concentration of
transcriptional activator accumulates to turn on expression of the
reporter. Titrating the T3 RNAP template DNA in TX-TL reac-
tions, we found a steep transition from low to high expression
with a half-maximal activation at 10 pM (Supplementary Fig-
ure 14). The calculated bulk concentration of T3 RNAP template
in an artificial quorum sensing experiment at the threshold
density of 400 cell-mimics per droplet is 12.5 pM, similar to the
activation threshold in bulk solution.

During development, cells interpret signals secreted by their
neighbors to differentiate into specialized cell-types that express
different sets of genes25. We aimed to emulate cellular
differentiation according to local environment by combining
the artificial quorum sensing network with a constitutively
expressed tetR-mCherry reporter that turns on irrespective of
cell-mimic density (Fig. 4d). We distributed cell-mimics unevenly
in a long narrow reaction chamber (Fig. 4e), and analyzed the
fluorescence of individual hydrogel nuclei according to their
location in the density gradient. While absolute fluorescence
intensities and background fluorescence increased with cell-
mimic density, hydrogel nuclei from the high density area
displayed visibly higher sfGFP:mCherry ratios than hydrogel
nuclei in the dilute region that primarily displayed mCherry
fluorescence (Fig. 4f). In the continuous density gradient, we
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(green) and tetR-mCherry / tetO cell-mimics (magenta) were distributed in a channel to stay separate at the sides and mix in the center. Bottom image
shows the distribution of sfGFP and mCherry fluorescence after 5 h. Merge of the two channels results in a white signal (middle). Magnified images from
indicated positions along the channel are shown above. Merged image with cell-mimic types indicated by colored, dashed circles (top), and brightfield,
sfGFP and mCherry signals shown separately (below)
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observed some graded responses in the center of the chamber at
medium density. However, plotting sfGFP against mCherry
fluorescence for individual hydrogel nuclei revealed two distinct
populations of fluorescence signals according to position in the
chamber (Supplementary Figure 15).

Discussion
We developed porous cell-mimics capable of gene expression and
communication via diffusive protein signals. The clay-DNA
hydrogel in the cell-mimic’s interior resembles a eukaryotic cell’s
nucleus, and represents a different strategy to compartmentalize
artificial cells17,32,33. Our study demonstrates that clay minerals
and clay-DNA hydrogels are useful hybrid materials for synthetic
biology and the assembly of artificial cell-mimics. In fact, clay
minerals have been proposed as favorable environments for
prebiotic evolution because a wide variety of organic molecules
adsorbs to their surface. Clay minerals have been shown to pos-
sess catalytic properties34 and to enhance protein synthesis in
cell-free expression systems28. Unlike lipid vesicles that require
careful matching of osmolarities and gentle separation techni-
ques, the cell-mimics reported here with their porous polymer
membranes were physically highly stable, easily transferred into
new media by centrifugation, and retained full expression cap-
abilities after 2 years of storage. Microfluidic production of highly
homogeneous cell-mimics will facilitate studies requiring large
quantities of cell-mimics as our results on spatially arrayed,
communicating cell-mimics demonstrate. Passivating cell-
mimics’ polymer membranes with PEG, we showed that their
membranes could be chemically modified, which will allow

further functionalization, for example, for immobilization on
substrates, to target specific proteins to the membrane or to tune
membrane permeability.

So far, communication in synthetic, non-living cell-mimics has
been limited to small molecule signals5,19,20,22,23. The porous cell-
mimics developed here expand the communication capabilities of
artificial cells to large macromolecules like RNAs and proteins.
We showed that genetic circuits could be distributed into separate
cell-mimics, which allowed them to share tasks. Such modularity
might facilitate the assembly of functional, distributed gene cir-
cuits by titrating cell-mimics containing different parts of a net-
work. Furthermore, individual components of circuits located in
different cell-mimics can be spatially organized to generate spa-
tiotemporal expression patterns. Protein signals play an impor-
tant role for cell–cell communication in multicellular organisms,
where cells release and receive protein signals in the form of
hormones, growth factors, and morphogens25. We believe that
reaction–diffusion models explaining developmental processes in
multicellular organisms may be tested and emulated in artificial,
tissue-like arrangements of cell-mimics even when they are
composed of unnatural materials, operate on different scales and
with different molecular mechanisms. Clearly, a major difference
between an artificial tissue assembled from porous cell-mimics
and natural tissues is that translation of proteins takes place both
inside and outside of the cell-mimic a given mRNA originates
from, and that mRNAs and proteins can freely diffuse. In this
regard, our system emulates features of the syncytium stage
during Drosophila embryogenesis, when thousands of nuclei
accumulate in the unseparated cytoplasm of the oocyte35. In
another analogy to this developmental stage, we showed trapping
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of the TetR transcription factor in nuclei containing binding sites.
Nuclear trapping is a mechanism that is responsible for estab-
lishing sharp gradients of phosphorylated ERK/MAPK (dpERK)
across the syncytical Drosophila embryo by limiting diffusion of
dpERK36. In future work, diffusion rates of proteins through
tissue-like arrangements of cell-mimics may be tuned by using
nuclear binding sites that restrict diffusion of DNA binding
proteins or by modifying polymer membrane permeability.

A genetic activation circuit led to a remarkable collective
response to cell-mimic density, which resembled bacterial
quorum sensing. In contrast to bacterial quorum sensing31, the
mechanism of our artificial quorum sensing involved no positive
feedback loop and employed a protein instead of a small mole-
cule, showing that artificial cells can emulate biological phe-
nomena using unnatural parts and mechanisms. Several
molecular mechanisms can produce cooperative or ultrasensitive
behaviors37. Polyvalent interactions enhance functional affinities
between binding partners by favoring ligand rebinding after an
initial binding event occurred37–39. We believe the switch-like
behavior of the artificial quorum sensing response is due to
cooperative binding of the T3 RNAP to highly polyvalent
hydrogel nuclei containing high local concentrations of T3 RNAP
promoters, combined with large distances between cell-mimics at
low densities (Supplementary Figure 16), and an already sig-
moidal response curve to T3 RNAP template concentration
(Supplementary Figure 14). Collective responses can lead to
greater accuracy and reduce noise3, which will be particularly
helpful for the assembly of reliably functioning cell-mimics,
which often suffer from variability in gene expression5,40.

In conclusion, our system has a number of potential uses,
including programming cell-mimics to collectively sense and
respond to their environment. Indeed, artificial cell-mimics could
be used to develop sensors and self-organizing materials, as well
as being arrayed into synthetic tissues of artificial cells,
which could serve as simplified models for reaction–diffusion
processes.

Methods
Fabrication of microfluidic chips. PDMS devices were prepared by standard soft
lithography methods to produce devices with a design as shown in Supple-
mentary Figure 1. A silicon wafer patterned with SU-8 photoresist served as a
mold for PDMS devices. The mold was prepared following standard photo-
lithography procedures to produce a feature height of 43 µm. Design of the flow-
focusing junction was adapted from Desphande et al.16 (Supplementary Fig-
ure 1). PDMS (Sylgard, Dow Corning) was prepared at a 1:10 ratio and cured
for 1 h at 80 °C. PDMS devices were bonded to PDMS spincoated cover glass
using oxygen plasma (50 watt for 30 s at 0.45 torr). After bonding, devices were
baked overnight at 120 °C to recover hydrophobicity. Channels downstream of
the flow-focusing junction were rendered hydrophilic by a treatment with a 5%
(wt/vol) polyvinyl alcohol (PVA) solution16, which was flowed in the inlet for
the outer aqueous solution for 5 min while blowing air into the other inlets to
avoid contact of the PVA-solution with device regions upstream of the flow-
focusing junction. The remaining PVA-solution was removed by applying
vacuum to the outlet. Following PVA-treatment devices were baked again for
2 h at 120 °C and used immediately or stored for up to 2 months.

Production of porous cell-mimics with DNA-hydrogel nuclei. 2% (wt/vol)
Laponite XLG (BYK Additives) clay stock was prepared by mixing 10 ml of
ultrapure H2O on a magnetic stir plate to create a vortex. 200 mg of Laponite XLG
were slowly added into the vortex and left to stir for 2 h until clear. The dispersion
was then stored at 4 °C and used for up to a week. Photoinitiator 2,2-dimethoxy-2-
phenylacetophenone was dissolved at 5% (wt/vol) in 1-decanol and in Trimethy-
lolpropane ethoxylate triacrylate (ETPTA, Sigma-Aldrich, Mn 428). ETPTA with
photoinitiator was stored at 4 °C and used for up to a week. Double emulsion
droplets were prepared with an inner aqueous solution (IA) containing 0.4% (wt/
vol) laponite XLG, 15% (vol/vol) glycerol, 50 mg/ml poloxamer 188, 20 µM sulfo-
Cy5 and up to 300 ng/µl plasmid or linear DNA. The middle organic phase (MO)
was composed of glycidyl methacrylate (GMA, Sigma-Aldrich), ETPTA, and 1-
decanol at a 48:32:20 ratio and contained 2.6% (wt/vol) photoinitiator and 0.25%
(vol/vol) Span-80 to produce porous microcapsules26. For fluorescently labeled
microcapsule membranes, the MO phase contained 0.1 mg/ml methacryloxyethyl

thiocarbamoyl rhodamine B. The outer aqueous phase (OA) was 15% (vol/vol)
glycerol with 50 mg/ml poloxamer 188.

Using syringe pumps, the three phases were flowed through the microfluidic device
at speeds of 3 to 12 µl/h for the IA, 30 to 70 µl/h for the MO and 250 to 500 µl/h for
the OA phase. Flow rates were adjusted to produce a stable formation of double
emulsion droplets and then left unchanged for collection of droplets. Typically, about
200 µl of double emulsion were collected from the chip. The emulsion was then placed
in a 2mm thick chamber built from cover glass and exposed to 350 nm UV light for
30 s using a UV reactor (Rayonet). The dispersion of polymerized microcapsules was
then added to 2ml solution of 70% Ethanol containing 200mM HEPES pH 8 to
permeabilize the shell and to form the DNA-clay-hydrogel nucleus. This stock was
stored at −20 °C until use.

To prevent non-specific binding of proteins to porous polymer membranes,
microcapsules were treated with polyethylene glycol (PEG). We coupled amino-
PEG12-alcohol to the epoxide functionalities on the polymer shells. First,
microcapsules were washed with 200 mM sodium carbonate buffer pH 10 by
centrifugation. All supernatant was removed from the capsule pellet and a solution
of 250 mM amino-PEG12-alcohol in 50% ethanol pH 10 was added to the pellet.
Microcapsules were incubated at 37 °C for reaction overnight and then washed
with 100 mM HEPES pH 8. These PEGylated cell-mimics were either used directly
or stored in 70% ethanol 200 mM HEPES pH 8 at −20 °C.

DNA templates. Plasmids used in this study are listed in Supplementary Table 1.
Plasmid DNA was purified using the NucleoBond Xtra Midi kit (Macherey-Nagel),
followed by an isopropanol precipitation and resuspension of the DNA pellet in
ultrapure H2O to prepare highly concentrated plasmid stocks and maximize
expression in TX-TL reactions. The template for T3 RNA polymerase was on linear
DNA prepared by PCR from a plasmid template. DNA template concentrations
encapsulated in cell-mimics are listed in Supplementary Table 2.

Cell-free transcription and translation reactions. E. coli lysate for TX-TL
reactions was prepared by freeze-thawing from E. coli BL21-Gold (DE3)/pAD-
LyseR41. To induce T7 RNA polymerase activity besides E. coli RNA polymerase
activity the main culture was induced with 0.5 mM IPTG an optical density
measured at 600 nm (OD600) of 0.5–0.6. Cells were harvested by centrifugation
at an OD600 of 1.4 and resuspended in ice cold S30A buffer (14 mM magnesium
glutamate, 60 mM potassium glutamate, 50 mM Tris, pH 7.7). Cells were again
pelleted by centrifugation, and after determining pellet mass, cells were resus-
pended in two volumes (relative to cell mass) of S30A buffer containing 2 mM
DTT and frozen at −80 °C. For lysate preparation, cells were thawed, vigorously
vortex mixed for 3 min and incubated on an orbital shaker at 300 rpm at 37 °C
for 45 min. Cell suspensions were again vortex mixed and incubated for another
45 min under shaking at 37 °C. Following incubation, cells were again vigor-
ously mixed and the lysate was cleared by centrifugation at 50,000×g for 45 min.
Cell debris-free, clear supernatant was collected and frozen in aliquots at
−80 °C until use. For the final composition of TX-TL reactions, cell lysate was
diluted 2.5-fold with reaction buffer, microcapsules or DNA, and other addi-
tions as needed. This resulted in the following concentrations in the TX-TL
reaction: 4.6 mg/ml protein, 7 mM Mg-glutamate, 60 mM K-glutamate, 3.5 mM
DTT, 0.75 mM each amino acid except leucine, 0.63 mM leucine, 50 mM
HEPES, 1.5 mM ATP and GTP, 0.9 mM CTP and UTP, 0.2 mg/ml tRNA,
0.26 mM CoA, 0.33 mM NAD, 0.75 mM cAMP, 0.068 mM folinic acid, 1 mM
spermidine, 30 mM 3-PGA, 3.5% PEG-8000. When linear DNA templates were
used, they were stabilized by adding 4 µM of chi6 duplex DNA to the TX-TL
reaction42. TX-TL reactions were incubated at 29 °C for expression.

Gene expression in cell-mimics. For cell-mimics, expression reactions typically
consisted of 1 µl concentrated cell-mimics in 100 mM HEPES pH 8 and TX-TL
reagents for a final volume of 5 µl. Droplets of 4.5 µl of this mixture were pipetted
onto a 35 mm Lumox dish (Sarstedt). The gas permeable substrate ensured
homogeneous sfGFP expression in the sample. The cell-mimic droplet was covered
with cover glass and sealed with a ring of vacuum grease to prevent evaporation
and provide a spacer. The reaction volume was scaled up for experiments in larger
samples, and was 20 µl in Fig. 2b and 35 µl for long, narrow reaction chambers in
Figs. 2c and 4e. Long, narrow reaction chambers were made from two parallel
20 mm lines of vacuum grease with a gap of 2 mm, which was filled with TX-TL
and cell-mimics and then sealed with cover glass.

Preparation of labeled ribosomes. E. coli ribosomes (New England Biolabs) were
incubated in labeling buffer (50 mM HEPES pH 8.2, 100 mM KCl, 10 mM mag-
nesium acetate) with a molar excess of Alexa Fluor 488 NHS Ester (ThermoFisher
Scientific) for 90 min at room temperature. Free dye was removed by washing with
labeling buffer in centrifugal filter devices with a molecular weight cut-off of 100
kDa. Each ribosome contained approximately eleven Alexa Fluor 488 labels.

Plate reader reactions. Plate reader reactions were performed in 384-well plates
using a 10 µl reaction volume covered with 10 µl light mineral oil in a Tecan infinite
F200 plate reader. GFP fluorescence was read every 5 min using a 485 nm ± 20 nm
excitation filter and a 550 nm ± 35 nm emission filter, followed by 1 min of shaking.
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Fluorescence intensity measurements were calibrated using purified sfGFP-His6 to
determine absolute concentrations.

Imaging and image analysis. Images were acquired using a spinning disk
confocal microscope consisting of a Yokagawa spinning disk system (Yokagawa,
Japan) built around an Axio Observer Z1 motorized inverted microscope (Carl
Zeiss Microscopy GmbH, Germany) with a 20 × 1.42 NA objective. Large
regions were imaged as tiles and stitched using ZEN Blue software. Further
image processing and analyses were done in Fiji/ImageJ43. Fluorescence traces
or endpoint intensities of individual hydrogel nuclei were extracted from
timelapse movies by measuring fluorescence in manually selected oval regions
in nuclei, using a non-fluorescent region in each cell-mimic for background
subtraction. Artificial quorum sensing data was analyzed using the colony
counter plugin in Fiji/ImageJ to segment and count cell-mimics and polymer
beads in the stitched brightfield image of a droplet. When necessary, regions of
interest were manually added or deleted. Fluorescence values of individual cell-
mimics were mean fluorescence values of the individual segmented cell-mimics.
For background correction, fluorescence values of segmented regions from each
droplet were sorted. The lowest fluorescence intensities were from solid polymer
beads, and we used this property for background correction. We removed the
lowest 34% of values, which was the percentage of polymer beads in the sample,
and used the highest of the removed values for background subtraction of the
reduced list. Experiments (droplets with different amounts of cell-mimics) were
performed for densities between 25 and 800 cell-mimics per droplet, which were
binned every 50 cell-mimics. Each bin contained data from at least 156 analyzed
cell-mimics.

Scanning electron microscopy was performed with a Zeiss SIGMA VP field
emission scanning electron microscope using air-dried cell-mimics. To image
cross sections of microcapsule polymer membranes, cell-mimics were cut using
a razor blade.

Data availability
The authors declare that all relevant data supporting the findings of this study are
available within the paper and its Supplementary information files. Additional data
are available from the corresponding author upon request.
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noncanonical amino acids
Rey W. Martin1,2,3, Benjamin J. Des Soye2,3,4, Yong-Chan Kwon1,2,3,5, Jennifer Kay1,2,3, Roderick G. Davis6,

Paul M. Thomas 6,7,8, Natalia I. Majewska1, Cindy X. Chen1, Ryan D. Marcum3,4, Mary Grace Weiss1,

Ashleigh E. Stoddart1, Miriam Amiram9,10, Arnaz K. Ranji Charna1,2,3, Jaymin R. Patel 9,10, Farren J. Isaacs9,10,

Neil L. Kelleher 4,6,7,8,11, Seok Hoon Hong12 & Michael C. Jewett 1,2,3,4,8,13

Cell-free protein synthesis has emerged as a powerful approach for expanding the range of

genetically encoded chemistry into proteins. Unfortunately, efforts to site-specifically incor-

porate multiple non-canonical amino acids into proteins using crude extract-based cell-free

systems have been limited by release factor 1 competition. Here we address this limitation by

establishing a bacterial cell-free protein synthesis platform based on genomically recoded

Escherichia coli lacking release factor 1. This platform was developed by exploiting multiplex

genome engineering to enhance extract performance by functionally inactivating negative

effectors. Our most productive cell extracts enabled synthesis of 1,780 ± 30mg/L superfolder

green fluorescent protein. Using an optimized platform, we demonstrated the ability to

introduce 40 identical p-acetyl-L-phenylalanine residues site specifically into an elastin-like

polypeptide with high accuracy of incorporation (≥ 98%) and yield (96 ± 3mg/L). We

expect this cell-free platform to facilitate fundamental understanding and enable manu-

facturing paradigms for proteins with new and diverse chemistries.
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Cell-free synthetic biology is emerging as a transformative
approach to understand, harness, and expand the cap-
abilities of natural biological systems1. The foundational

principle is that complex biomolecular transformations are con-
ducted without using intact cells. Instead, crude cell lysates (or
extracts) are used, which provides a unique freedom of design to
control biological systems for a wide array of applications. For
example, cell-free protein synthesis (CFPS) systems have been
used to decipher the genetic code2, prototype genetic circuits and
metabolic pathways3–7, enable portable diagnostics8, facilitate on-
demand biomolecular manufacturing9,10, and produce antibody
therapeutics at the commercial scale11. The recent surge of
applications has revitalized interest in cell-free systems, especially
in areas where limits imposed by the organism may impede
progress. One such area is expanding the genetic code to incor-
porate non-canonical amino acids (ncAAs) into proteins, where
the extent of engineering can be limited by the fitness of the
organism12–15.

Pioneering efforts by Schultz and others have demonstrated it
is possible to genetically encode more than 150 ncAAs into
proteins, and that this encoding can be a powerful tool15,16. For
example, site-specific incorporation of ncAAs at single positions
in proteins have provided new ways to study protein structure,
dynamics, and posttranslational modifications17, as well as
manufacture protein–drug conjugates18,19. However, ineffi-
ciencies associated with the engineered orthogonal translation
(TL) machinery (e.g., TL elements that specifically use a ncAA
and do not interact with the cell’s natural TL apparatus) have
limited the ability to incorporate multiple ncAAs into proteins
with high purity and yields20,21. A key constraint is that codon re-
assignment strategies typically rely on amber suppression22,
where the amber UAG stop codon is re-assigned to encode a
ncAA and the orthogonal transfer RNA anticodon is mutated to
CUA. The orthogonal ncAA-tRNACUA must then outcompete
essential TL machinery (e.g., release factor 1, RF1) for the UAG
codon. Historically, this competition has led to poor protein
expression yields, as premature termination by RF1 exponentially
increases with the number of amber codons in the coding
sequence23. Poor protein expression yields limit applications in
both basic and applied science.

Recently, a genomically recoded Escherichia coli strain was
developed (C321.ΔA) in which all 321 occurrences of the UAG
stop codon were reassigned to the synonymous UAA codon24

using multiplex automated genome engineering (MAGE)25 and

conjugative assembly genome engineering (CAGE)26. This
allowed for the genomic deletion of RF1 (i.e., ΔprfA or ΔA)
without affecting cellular physiology, thus freeing the UAG codon
for dedicated ncAA incorporation24. Precursor RF1-deficient
strains in which only a small set of essential genes were recoded
have already shown the potential to produce proteins with
improved ncAA incorporation efficiencies as compared with
strains with RF124,27; however, the upregulation of natural sup-
pression mechanisms (e.g., ssrA) is problematic, because they
promote the formation of truncation products, especially for tens
of incorporation events24,27,28. The fully recoded C321.ΔA strain
avoids these problems and we recently showed the possibility of
using C321.ΔA coupled with extensively engineered synthetases
for multi-site incorporation of up to 30 ncAAs into a single
biopolymer in vivo20. Based on these results, we hypothesized
that the fully recoded C321.ΔA strain would serve as an ideal
chassis strain for the development of crude extract-based cell-free
systems capable of highly efficient, multi-site ncAA incorporation
into biopolymers. Such a system would complement in vivo
manufacturing strategies, with some advantageous features29,30.
For example, the open reaction environment means the supply of
orthogonal TL system (OTS) components and their substrates
necessary for high-level ncAA incorporation can be provided and
controlled at precise ratios as a way to overcome enzyme ineffi-
ciencies. In addition, cell-free systems are not limited by viability
requirements, thus avoiding constraints arising from toxic OTS
components27. Our proposed approach based on the C321.ΔA
strain might also provide cost and ease of use advantages over
other cell-free systems that have tried to reduce the effects of RF1
competition by using reconstituted systems31, antibody inhibi-
tors32, RF1 depletion by subtractive chromatography33, or par-
tially recoded E. coli strains with elevated natural suppression
mechanisms34.

Here we describe the development of a CFPS platform from the
genomically recoded C321.ΔA to manufacture proteins with tens
of identical site specifically introduced ncAAs. Specifically, we use
MAGE to improve protein production capacity by inactivating
negative effectors in the host strain such that they are not present
in the lysate. By testing tens of strain variants, we isolate a CFPS
platform capable of synthesizing 1,780 ± 30 mg/L of superfolder
green fluorescent protein (sfGFP), as well as modified sfGFP
containing up to five p-acetyl-L-phenylalanine (pAcF) residues at
high purity ( ≥ 98%). Using an optimized CFPS platform, we test
the ability to synthesize elastin-like polypeptides (ELPs) that
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contain up to 40 UAG codons. We demonstrate incorporation of
40 ncAAs per ELP protein with high yields (~ 100 mg/L) and high
fidelity ( ≥ 98%) of site-specific ncAA incorporation.

Results
CFPS from extracts of a genomically recoded organism. To
benchmark CFPS activity, we first compared sfGFP yields in
extracts from C321.ΔA and BL21 Star (DE3), the standard com-
mercial protein expression strain (Fig. 1a). Combined transcrip-
tion (TX)–TL reactions were carried out in 15 µL volumes for 24
h at 30 °C. Protein yields from BL21 Star (DE3) extracts were > 3-
fold higher than those from C321.ΔA (Fig. 1b), highlighting the
need to improve protein synthesis yields to take advantage of the
benefits of RF1 removal for making modified proteins with
ncAAs for preparative purposes.

Previously, genomic modifications to the extract source strain
to stabilize DNA template35, amino acid supply36, and protein
degradation37 have improved CFPS yields from other source
strains. For example, we engineered a partially recoded strain of
E. coli (rEc.E13.ΔA) by disrupting genes encoding nucleases
(MCJ.559 (endA− csdA−)) to improve protein synthesis yields >
4-fold relative to the parent strain34. Building on this knowledge,
we hypothesized that the genomic disruption of negative protein
effectors in C321.ΔA extracts would help stabilize essential
substrates in cell-free reactions, extend reaction durations, and
increase CFPS yields.

Strain engineering for improved CFPS performance. We tar-
geted the functional inactivation of five nucleases (rna, rnb, mazF,
endA, and rne), two proteases (ompT and lon), and eight targets

shown previously to negatively impact amino acid, energy, and
redox stability (gdhA, gshA, sdaA, sdaB, speA, tnaA, glpK, and gor)
in C321.ΔA individually and in combination (Supplementary
Table 1). Our effort followed a five-step approach. First, we
generated a library of single mutant strains in which we used
MAGE to insert an early TL termination sequence into the open
reading frames of gene targets that would functionally inactivate
them, as we have done before34 (Fig. 2a and Supplementary
Tables 2 and 3). Second, we confirmed gene disruptions using
multiplex allele specific PCR and DNA sequencing. Third, we
measured the growth rate for each of the MAGE-modified strains,
noting that average doubling time increased 9 ± 9% above the
parent strain (Supplementary Table 4). Fourth, cell extracts from
each strain were generated using a high-throughput and robust
extract generation procedure38. Fifth, we tested the strains in
CFPS to assess their overall protein synthesis capability. We
observed that seven single functional inactivation mutations
increased CFPS yields more than 50% relative to the wild type
C321.ΔA strain; namely, rne−, mazF−, tnaA−, glpK−, lon−, gor−,
and endA− (Fig. 2b). These results suggested that some of the
protein effectors targeted for inactivation were deleterious to
CFPS activity. They also demonstrated the difficulty associated
with predicting CFPS productivities from engineered strains. For
example, some mutations identified in previous screens (e.g., rnb
− in rEc.E13.ΔA)34 were not beneficial in the C321.ΔA context,
others which reduced cellular fitness enhanced CFPS activity (e.g.,
lon−), and yet others with no impact on cell growth (e.g., ompT−)
led to poor extract performance (Fig. 2b).

With improvements in hand from single mutant strains, we
next set out to identify synergistic benefits to CFPS productivity
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by combining highly productive mutations. We introduced the
rne−, mazF−, tnaA−, glpK−, lon−, and gor− mutations to the best
performing strain from our initial screen, strain C321.ΔA.542
(endA−) (Fig. 2c). The combination of endA− and gor−

mutations resulted in an extract capable of synthesizing 1,620 ±
10 mg/L of active sfGFP (strain C321.ΔA.709). We then used
C321.ΔA.709 to generate six additional strains with combined
mutations. Although we did not observe synergistic enhance-
ments, our top performing extract chassis strain (C321.ΔA.759
(endA− gor− rne− mazF−)) resulted in total yields of 1,780 ± 30
mg/L (Fig. 2d), representing a 4.5-fold increase in sfGFP yield
relative to the progenitor strain (C321.ΔA). In addition, we tested
12 combinatorial mutants generated throughout our MAGE
screening, and although a few demonstrated CFPS yields > 1 g/L
of active sfGFP, none surpassed the CFPS yields observed from
C321.ΔA.759 (Supplementary Table 5). Lastly, we determined that
CFPS improvements seen in C321.ΔA.759 brought on by genomic
modifications could not be obtained by simply supplementing
C321.ΔA-based reactions with RNAse inhibitors (Supplementary
Fig. 1). Final strains were fully sequenced to verify functional
targeted modifications in the genome. Whole-genome sequences
for strains C321.ΔA, C321.ΔA.542, C321.ΔA.705, C321.ΔA.709,
C321.ΔA.740, and C321.ΔA.759 have been deposited in the NCBI
SRA collection under accession code PRJNA361365. Each of the
targeted mutations were achieved. MAGE has been shown to
induce mutations throughout the genome before, and we
observed a number of accumulated polymorphisms in the extract
chassis strains. These polymorphisms, along with a specific list of
protein-coding genes bearing mutations, are shown in Supple-
mentary Tables 6 and 7. In the future, we seek to better
understand the systems impact of the non-targeted mutations.

Based on our previous studies using rEc.E13.ΔA[34], we
hypothesized that the beneficial mutations in C321.ΔA.759
reduced messenger RNA degradation and stabilized the DNA
template. To test mRNA stability, we performed TL-only
reactions using extracts derived from C321.ΔA.759 and C321.

ΔA. Purified mRNA template coding for sfGFP was used to direct
protein synthesis. We observed a twofold increase in mRNA and
~ 90% increase of active sfGFP using C321.ΔA.759 extracts
relative to C321.ΔA extracts after a 120 min cell-free reaction
(Supplementary Fig. 2). To test DNA stability, TX-only reactions
were used. Specifically, plasmid DNA containing the modified red
fluorescent protein–Spinach aptamer gene (Supplementary
Table 3) was pre-incubated with cell extract and a fluorophore
molecule, 3,5-difluoro-4-hydroxybenzylidene imidazolinone
(DFHBI), for 0, 60, and 180 min. Then, CFPS reagents were
added and mRNA was synthesized, then quantified by measuring
the fluorescence of DFHBI-bound Spinach aptamer mRNA. After
180 min of pre-incubation, nearly 50% of Spinach aptamer
mRNA was synthesized in C321.ΔA.759 (endA−) extracts relative
to the 0 min control. In contrast, the extract with endonuclease I
(C321.ΔA) decreased the maximum mRNA synthesis level by ~
75% (Supplementary Fig. 3). Together, our data support the
hypothesis that inactivating nucleases in the extract chassis strain
stabilized DNA and mRNA to improve CFPS yields.

In addition to confirming added DNA and mRNA stability, we
also assessed potential changes in energy and amino acid
substrate stability that may have occurred in C321.ΔA.759–
relative to C321.ΔA–based CFPS. Similar trends in ATP levels
(Supplementary Fig. 4), adenylate charge (Supplementary Fig. 5),
and amino acid concentrations (Supplementary Fig. 6) were
observed in CFPS reactions derived from both strains. Supple-
mental feeding with the amino acids found to be most rapidly
depleted did not improve yields (Supplementary Fig. 6f). The
similar amino acid and energy stability profiles in C321.ΔA.759
compared with C321.ΔA suggest that our strain engineering
efforts did not modulate the availability of these substrates.

To generalize CFPS improvements in C321.ΔA.759, we next
expressed four model proteins that have been previously
synthesized in CFPS systems and compared productivities to
BL21 Star (DE3). We observed a 31–63% increase in soluble and
total protein synthesis of sfGFP, chloramphenicol
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acetyltransferase (CAT), dihydrofolate reductase (DHFR), and
modified murine granulocyte-macrophage colony-stimulating
factor (mGM-CSF) in our engineered C321.ΔA.759 extracts as
compared to BL21 Star (DE3) extracts (Supplementary Fig. 7a).
Autoradiograms of proteins produced using C321.ΔA.759 extract
show production of full-length sfGFP, CAT, DHFR, and mGM-
CSF (Supplementary Fig. 7b and 7c). In addition, we observed
disulfide bond formation in the model mGM-CSF under an
oxidizing CFPS environment (–DTT), as has been previously
shown (Supplementary Fig. 7c)39,40. In sum, the development of
enhanced extract source strains by MAGE enabled a general and
high-yielding CFPS platform.

Multi-site ncAA incorporation into proteins in CFPS. We next
aimed to test site-specific ncAA incorporation into proteins using
our high-yielding CFPS platform from C321.ΔA.759-derived
extracts and compare these results to reactions using extracts
from BL21 Star (DE3) (containing RF1) and a partially recoded
RF1-deficient engineered strain MCJ.559 based on rEc.E13.ΔA.
To do so, we transformed each organism with pEVOL-pAcF
plasmid that expresses both orthogonal pAcF synthetase
(pAcFRS) and tRNA (o-tRNAopt)41. Then, we quantitatively
assessed the incorporation of pAcF into sfGFP variants with up to
five in-frame amber codons. CFPS reactions were supplemented
with additional OTS components based on our previous work27.
Specifically, we added 10 µg/mL of linear DNA encoding opti-
mized orthogonal tRNA in the form of a transzyme (o-tRNAopt)
for in situ synthesis of the tRNA. The orthogonal pAcFRS was
overproduced, purified as previously described, and added at a
level of 0.5 mg/mL. The ncAA, in this case pAcF, was supplied at
a level of 2 mM in each CFPS reaction. Total protein yields were
quantified by 14C-leucine radioactive incorporation. Production
of wild-type and modified sfGFP containing one UAG codon
(sfGFP-UAG) was increased 77% and 92% in C321.ΔA.759
extracts as compared with BL21 Star (DE3), and 120% and 145%
as compared with MCJ.559, respectively (Fig. 3a and Supple-
mentary Fig. 8a). Moreover, we observed that sfGFP-UAG was
expressed at 90% the level of wild-type sfGFP. Owing to the
absence of RF1 competition, the major protein produced was full-
length sfGFP using extracts derived from C321.ΔA.759 and
MCJ.559, whereas truncated sfGFP was visible in reactions cat-
alyzed by BL21 Star (DE3) extract, presumably due to RF1
competition (Fig. 3a and Supplementary Fig. 8a)30,42. Similar
results were obtained with a second model protein, CAT with an
in-frame amber codon at position 112 (CAT-UAG) (Fig. 3a and
Supplementary Fig. 8b). When expressing CAT-UAG using
MCJ.559 extract, similar levels of truncated CAT relative to BL21
Star (DE3) were observed; however, this is most likely due to an
upregulation of rescue mechanisms for ribosome stalling in the
partially recoded strain34. Single pAcF incorporation into CAT-
UAG using C321.ΔA.759 lysate demonstrated only full-length
product. Therefore, our completely recoded, genomically engi-
neered C321.ΔA.759 strain provides benefits for efficient ncAA
incorporation without detectable levels of truncation product.

We then evaluated the ability of our high-yielding CFPS
platform to facilitate incorporation of up to five identical ncAAs
into sfGFP. For ease of analysis, a fluorescence assay was used,
which indicated increased production of sfGFP in extracts from
C321.ΔA.759 (Fig. 3b). Results for BL21 Star (DE3) extract
displayed an exponential decrease in active sfGFP synthesized
with an increasing presence of UAG, leading to the production of
no detectable active protein for sfGFP-5UAG. Active protein
produced by C321.ΔA.759 extract were ~ 2-fold greater than that
produced by MCJ.559 extract, suggesting that benefits observed in
increased yield can be extended to multi-site ncAA incorporation

for our enhanced, fully recoded strain. Furthermore, we examined
the ability to incorporate consecutive pAcFs into single protein.
Protein gel and autoradiogram analysis of sfGFP with eight and
nine consecutive amber codons indicated that this is possible,
with the percent of full-length product being ~ 75% and 60%,
respectively (Supplementary Fig. 9).

In addition, batch reactions catalyzed by C321.ΔA.759 extracts
could also be scaled 17-fold without loss of productivity provided
that a proper ratio of surface area to volume ratio is maintained
(Supplementary Fig. 10)43. Of note, we believe our reactions
could be further scaled to a wide range of volumes to produce
larger amounts of protein if accounting for surface area to volume
effects. For example, Sutro Biopharma has applied E. coli-based
CFPS platforms to clinical manufacturing of therapeutics at the
100 L scale44, with an expansion factor of 106. In terms of cost,
although we use a phosphoenolpyruvate (PEP)-based CFPS
system here, cellular metabolism could be used to fuel cost
effective, high-level protein synthesis suitable for manufacturing
applications45,46.

After demonstrating benefits for protein expression, we carried
out top-down mass spectrometry (i.e., MS analysis of whole intact
proteins) to detect and provide semi-quantitative data for the
incorporation efficiency of pAcF into sfGFP using extract derived
from C321.ΔA.759. Figure 3c shows the 28+ charge state of
sfGFP and clearly illustrates mass shifts corresponding to the
incorporation of one, two, and five pAcF residues. Site-specific
incorporation of pAcF, as detected by MS, was ≥ 98% in all
samples, with ≤ 1 p.p.m. difference between experimental and
theoretical protein masses (Supplementary Fig. 11). In other
words, efficient and high yielding site-specific pAcF incorporation
into sfGFP was observed when using C321.ΔA.759 extract. We
went on to further show that extracts generated from C321.
ΔA.759 are compatible with multiple OTSs, showing the
incorporation of p-propargyloxy-L-phenylalanine and p-azido-L-
phenylalanine (pAzF) (Supplementary Fig. 12).

Multi-site ncAA incorporation into ELPs. We next explored the
synthesis of sequence-defined biopolymers containing tens of site
specifically introduced ncAAs using our efficient and tunable
CFPS system. As a model biopolymer, we selected ELPs. ELPs are
biocompatible and stimuli-responsive biopolymers that can be
applied for drug delivery and tissue engineering47,48. Typically,
ELPs consist of repeats of the pentapeptide sequence VPGVG,
which is known to be a key component in elastin and exhibits
interesting self-assembly behavior (random coil to helix) above its
transition temperature. The structure and function of elastin is
maintained as long as the glycine and proline residues are present;
however, the second valine residue is permissive for any amino
acid except proline and is therefore also permissive to ncAAs20.
Previously, ncAAs have been introduced into ELPs by substitut-
ing natural amino acids with structurally similar ncAAs in CFPS
systems49. Conticello and colleagues50 have also previously pro-
duced imperfect ELPs containing up to 22 ncAAs in vivo using an
E. coli strain with an attenuated activity of RF1. We previously
incorporated up to 30 ncAAs into ELPs by evolving orthogonal
synthetases in vivo with enhanced specificities20. In this study, we
constructed and tested in CFPS three ELP constructs containing
20, 30, and 40 UAG codons, as well as control proteins with
tyrosine codons substituted for UAGs.

Before characterizing ELP yields, we first carried out a series of
optimization experiments to enhance CFPS yields of sfGFP with 5
UAG codons, as expression yields for this construct were reduced
in our initial studies (Fig. 3b). By testing total and soluble protein
yields, we determined that the reduction in yield was a result of
loss in sfGFP solubility and activity (Supplementary Fig. 13).
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However, a 31% increase in sfGFP-5UAG production was
observed upon increasing pAcFRS levels 2-fold, pAcF levels 2.5-
fold, and o-tz-tRNAopt 3-fold (Supplementary Fig. 14). Upon
application of these optimized conditions, called OTSopt, to the
synthesis of ELP-UAGs containing 20, 30, and 40-mers, total
yields increased by 40%, 33%, and 26%, respectively, as compared
with supplementing with OTS levels optimized for 1 ncAA
incorporation (Supplementary Fig. 15). ELP-UAG products were
visualized using an autoradiogram, which demonstrated the high
percentage of full-length protein and whose band intensities
corroborate total yields measured (Supplementary Fig. 15b).

We next applied OTSopt to the synthesis of ELP-UAGs with 20,
30, and 40-mers in the presence and absence of pAcF to
demonstrate specificity of incorporation. ELP-UAGs were only
synthesized in the presence of pAcF without any clear indication
of truncation products, whereas no protein was observed in the
absence of pAcF (Fig. 4). We anticipated that yields would
decrease as the number of UAG codons increased due to the
higher demand of pAcF-charged o-tRNA. In contrast, near wild
type yields of ~ 100 mg/L were obtained for all UAG constructs.
We then carefully examined the efficiency of multi-site ncAA
incorporation using top-down liquid chromatography (LC)-MS

of intact ELPs. LC-MS analysis showed ≥ 98% site-specific pAcF
incorporation in ELP-UAG constructs of 20, 30, and 40-mers
(Fig. 4).

Discussion
We present a crude extract-based CFPS platform based on the
fully recoded C321.ΔA strain that is capable of high-level protein
expression. This platform was generated using MAGE to create
libraries of improved extract chassis strains by targeting the
functional inactivation of multiple negative effectors. A combi-
natorial disruption of the genes endA−, gor−, rne−, and mazF−

(C321.ΔA.759) increased total CFPS yields from 397 ± 24 mg/L in
the parent strain to 1,780 ± 30 mg/L of sfGFP, which is the
highest reported protein yield from RF1-deficient extracts. These
improvements translated to the enhanced yield of proteins har-
boring site specifically introduced ncAAs.

By optimizing the cell-free environment for multiple-identical
ncAA incorporation, we were able to achieve multi-site ncAA
incorporation into multiple model proteins with high yields (~
99% wild-type sfGFP expression yields for up to 2 ncAAs, ~ 95%
wild-type ELP expression yields for up to 20 ncAAs, and ~ 85%
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Fig. 4 Multi-site ncAA incorporation at high yield and purity. a Schematic of the protein sequences for wild-type ELPs containing three pentapeptide
repeats per monomer unit (ELP-WT) and ELPs containing 1 ncAA per monomer unit (ELP-UAG). b SDS-PAGE and autoradiogram analysis of cell-free
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wild-type ELP expression yields for up to 30 and 40 ncAAs) and
purity ( ≥ 98% accuracy of ncAA incorporation) due to the
absence of RF1 in our system. To our knowledge, these are the
purest polymers with this many site-specifically introduced
ncAAs (i.e., 40) synthesized to date. This exceeds our previous
effort in cells that could synthesize ELP constructs with 30 UAG
codons with 71% of the proteins having the desired 30 pAcF
residues20. As such, our approach opens opportunities to site-
specifically modify the dominant physical and biophysical prop-
erties of biopolymers. This will allow researchers to go beyond
tag-and-modify approaches that have historically been the focus
of ncAA incorporation efforts, because the field was previously
limited to only one or a few instances of site-specific incorpora-
tion. Notably, our protein expression yields of ~ 1,700 mg/L and
99% suppression efficiency for sfGFP with 2 ncAAs outperform
the best expression of proteins with single or multiple ncAAs
in vivo, to our knowledge (Fig. 2d and Supplementary Fig. 13).
For example, previous in vivo experiments using an RF1
knockout strain demonstrated the synthesis of enhanced GFP
containing one, two, and three pAcFs at 3.5, 3.5, and 5.4 mg/L,
respectively, corresponding to amber suppression efficiencies of
23%, 23%, and 36%51. Also in a separate report, an E. coli strain
with attenuated RF1 activity produced 21, 17, and 27 mg/L of
sfGFP with 3, ELP with 12, and ELP with 22 ncAAs incorporated,
respectively50. However, increasing the number of amber codons
(i.e., 12 and 22 ncAA incorporation) resulted in numerous
truncation products. Here we demonstrate a cell-free system from
engineered recoded bacteria that enables high yields of proteins
containing up to 40 ncAAs with no observable truncation pro-
ducts. Thus, our cell-free system will serve as a complement to
in vivo methods and be a useful technology for developing OTSs
for robust synthesis of modified proteins.

Looking forward, incorporating our discovered mutations into
a recently published optimized strain, C321.ΔA.opt, might further
increase the protein expression yields.52 In addition, as new
genomically recoded organisms with free codons are
constructed24,53–57, the development of extract chassis strains
enabled by our MAGE-guided approach could aid the generation
of highly efficient CFPS systems capable of incorporating two or
more distinct ncAAs into a single protein or sequence-defined
polymer. We envision that the generalized CFPS platform
described here will be applied to on-demand biomanufacturing
and biomolecular prototyping to transform biochemical engi-
neering and expand the range of genetically encoded chemistry of
biological systems.

Methods
Strains and plasmids. The bacterial strains and plasmids used in this study are
listed in Supplementary Table 3. Details for strain construction, plasmid con-
struction, verification, and culture growth are provided in the Supplementary
Methods.

Cell extract preparation. For prototyping engineered strains, cells were grown in
1 L of 2 × YTPG media (pH 7.2) in a 2.5 L Tunair shake flask and incubated at 34 °
C and 220 r.p.m. to OD600 of 3.0. Cells were pelleted by centrifuging for 15 min at
5000 × g and 4 °C, washed three times with cold S30 buffer (10 mM tris-acetate pH
8.2, 14 mM magnesium acetate, 60 mM potassium acetate, 2 mM dithiothreitol)58,
and stored at − 80 °C. To make cell extract, the thawed cells were suspended in 0.8
mL of S30 buffer per 1 g of wet cell mass and processed as reported by Kwon and
Jewett59. Full details for cell growth, collection, and CFPS extract preparation are
provided in the Supplementary Methods.

CFPS reactions. The PANOx-SP system was utilized for CFPS reactions46. Briefly,
a 15 µL CFPS reaction in a 1.5 mL microcentrifuge tube was prepared by mixing
the following components: 1.2 mM ATP; 0.85 mM each of GTP, UTP, and CTP; 34
µg/mL folinic acid; 170 µg/mL of E. coli tRNA mixture; 13.3 µg/mL plasmid; 16 µg/
mL T7 RNA polymerase; 2 mM for each of the 20 standard amino acids; 0.33 mM
nicotinamide adenine dinucleotide; 0.27 mM coenzyme-A; 1.5 mM spermidine; 1

mM putrescine; 4 mM sodium oxalate; 130 mM potassium glutamate; 10 mM
ammonium glutamate; 12 mM magnesium glutamate; 57 mM HEPES pH 7.2; 33
mM PEP); and 27% v/v of cell extract. For ncAA incorporation, 2 mM pAcF, 0.5
mg/mL pAcFRS, and 10 µg/mL of o-tz-tRNAopt linear DNA were supplemented to
cell-free reactions. For multi-site and consecutive ncAA incorporation, OTSopt

levels were increased to 5 mM pAcF, 1 mg/mL pAcFRS, and 30 µg/mL o-tz-
tRNAopt. o-tRNAopt linear DNA was amplified from pY71-T7-tz-o-tRNAopt

plasmid as described previously and transcribed during the cell-free reaction27.
Furthermore, the o-tRNAopt was expressed in the source strain via a plasmid prior
to extract preparation. Techniques for purifying aminoacyl tRNA synthetases are
described in the Supplementary Methods. When testing the effect of RNAse
inhibitor, 1 µL (4U) of inhibitor (Qiagen, Valencia, CA) was added into each 15 µL
reaction as per the manufacturer’s suggestion. Each CFPS reaction was incubated
for 20 h at 30 °C unless noted otherwise. Fed-batch and scale-up reaction formats
are described in the Supplementary Methods.

Protein quantification. Protein quantification was performed using fluorescence
detection and radioactive 14C-Leucine incorporation and scintillation counting as
described in the Supplementary Methods.

Whole-genome sequencing. As the gene encoding MutS is inactivated in C321.
ΔA, we chose to fully sequence the genomes of six key strains produced during our
screening efforts (C321.ΔA, C321.ΔA.542, C321.ΔA.705, C321.ΔA.709, C321.
ΔA.740, and C321.ΔA.759). Whole-genome sequencing was performed by the Yale
Center for Genome Analysis for library prep and analysis as described previously60

(see Supplementary Methods). Genomes have been deposited to NCBI SRA col-
lection, accession number PRJNA361365 (Individual accession numbers:
SRX2511757-SRX2511762).

Nucleotide and amino acid quantitation using HPLC. Amino acid and nucleotide
concentrations were measured via high-performance LC (HPLC). Cell-free reac-
tions were clarified by precipitation with an equal volume 5% w/v trichloroacetic
acid. Samples were centrifuged at 12,000 × g for 15 min at 4 °C and the supernatant
stored at − 80 °C until analyzed using an Agilent 1290 series HPLC system (Agi-
lent, Santa Clara, CA). For amino acid analysis, a Poroshell HPH-C18 column
(4.6 × 100 mm, 2.7 µm particle size; Agilent) was used with an automatic pre-
column derivatization method using o-pthalaldehyde and fluorenylmethyl chlor-
oformate61. Nucleotides were analyzed using a BioBasic AX column (4.6 × 150 mm,
5 µm particle size; Thermo Scientific, West Palm Beach, FL). Full methods are
described in the Supplementary Methods.

Full-length sfGFP and ELP purification and MS analysis. To confirm pAcF
incorporation at corresponding amber sites, LC-MS analysis was performed on
purified sfGFP and ELP reporter protein constructs with pAcF putatively incor-
porated. MS procedures and sample preparation details are given in the Supple-
mentary Methods.

Data availability. All data generated or analyzed during this study are included in
this published article (and its supplementary files) or are available from the cor-
responding authors on reasonable request. Genome sequences can be found
at: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA361365/. Individual accession
codes are: C321.ΔA (https://www.ncbi.nlm.nih.gov/sra/SRX2511762), C321.ΔA.542
(https://www.ncbi.nlm.nih.gov/sra/SRX2511761), C321.ΔA.705 (https://www.ncbi.
nlm.nih.gov/sra/SRX2511760), C321.ΔA.709 (https://www.ncbi.nlm.nih.gov/sra/
SRX2511759), C321.ΔA.740 (https://www.ncbi.nlm.nih.gov/sra/SRX2511758), and
C321.ΔA.759 (https://www.ncbi.nlm.nih.gov/sra/SRX2511757).
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