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Engineering biology and artificial intelligence (AI)ii are both characterized by their rapid growth, their potential 
to dramatically accelerate technological solutions to pressing challenges, and their tendency to usher in novel 
security concerns. It is unsurprising, then, that the emerging capabilities at the intersection of these 
technologies are generating both great enthusiasm and great concern. As the power of this technological 
convergence is still being explored and realized, it is timely to identify and consider potential security 
implications and how they might be addressed. By engaging in such a process now, researchers, policymakers, 
and members of societyiii can consider carefully what acceptable levels of risk given likely benefits might—be 
and for whom—as new capabilities are developed.  

 
i The Engineering Biology Research Consortium brings engineering biology researchers and other stakeholders from 
industry and academia together with policymakers to advance engineering biology to address national and global 
needs. EBRC White Papers are developed with significant, substantive direction, guidance, and input from EBRC 
members through an interactive process. EBRC products do not necessarily reflect the direct views of all EBRC 
members. 
ii Artificial Intelligence is an umbrella term that encompasses generative AI, many types of machine learning, and 
deep learning. To avoid confusion and in recognition that different AI-based approaches can be used to address the 
same challenges, the authors use “AI” to refer collectively to these approaches. 
iii This paper was developed by EBRC members, who are generally based in the technical research community. Thus, 
this paper takes a technical approach to this topic. However, members also pointed to the present opportunity to 
think more broadly about societal impacts, perceptions of risk, and roles in the determination of technological 

Overview & Key Recommendation 

As researchers and innovators work to leverage the power and opportunity of artificial intelligence to 
advance engineering biology to address societal challenges, stakeholders must also recognize the 
potential of AI-enabled capabilities to cause harm. Herein, we consider three areas—de novo biological 
design, closed loop-autonomous laboratory systems, and natural language Large Language Models—
where the intersection of these technologies may pose significant security concerns. For each, we 
describe the technology, associated security concerns, and how those concerns might be addressed.  

We recommend that a regularly convened international forum or initiative be established to bring 
diverse stakeholders together to identify security concerns at the intersection of engineering 
biology and AI and consider how they might be addressed. 
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Engineering biology applies an engineering design framework to the construction and modification of 
biological systems at the genetic level. Research is generally guided by the iterative “design-build-test-learn” 
(DBTL) cycle wherein a genetic circuit, pathway, organism, or even consortium of cells or microbes is built from 
molecular components (e.g., DNA, RNA, proteins) and tested to measure its performance against the function 
for which it was designed. That performance is used to inform the next design stage, and the cycle repeats 
until, ideally, an optimized target function is achieved. 

AI enhancement of the design of proteins, pathways,iv systems,v and even consortia of cells or organisms can 
decrease the number of iterations through the DBTL cycle and increase the efficiency (what is learned per unit 
cost) of each cycle. Furthermore, closed-loop, autonomous research systems are in development and may be 
realized in the coming years. In such systems, programmable robotics would build and test biological parts or 
systems. AI would learn from those tests and iterate upon the original biological design, thus requiring 
reduced—if any—human input, skill, and supervision to complete successive DBTL cycles. Additionally, natural 
language Large Language Models (LLMs) such as ChatGPT are becoming accessible to a far wider range of 
people whose experimentation is outside the control and/or view of state-funded and state-regulated research 
institutions, complicating traditional security governance capabilities.  

While molecular biology, engineering biology, and bioinformatic techniques and capabilities have advanced 
rapidly in the twenty-first century, AI-based capabilities may significantly increase this rate of advancement. 
Individually or in concert, these capabilities do pose security concerns.vi AI capabilities could help a malicious 
actor conceptualize an approach; gather information about how to carry out a plan; design biological parts or 
systems that could cause harm; develop strategies for avoiding detection; undertake the physical processes of 
building, testing, and weaponizing a biological system designed to cause harm; and develop a process for 
distributing the final product. Resulting harmful products might include human, plant, animal, or even 
microbial pathogens, potentially with enhanced disease characteristics. They could also include novel toxins 
that evade current detection or treatment mechanisms (e.g., a botulinum toxin that is harmful to humans but 
not susceptible to current antitoxins), illicit microbially-synthesized opioids, or microbes that degrade or 
weaken important materials. The scale of an attack could range from targeted biocrime; to an act of 
bioterrorism with significant but limited impact; to an act of biowarfare with high regional, national, and/or 
global morbidity and mortality. Different actors, ranging from an individual to an ideological group to an 
independent state, could be motivated by personal, ideological, economic, political, or other impetuses to 
attempt such attacks, and each might be more or less impacted by different approaches to deterrence, 
prevention, and mitigation.  

 
development. Different publics might perceive the risks and benefits of technologies at the intersection of 
engineering biology and artificial intelligence differently. We support the development of additional opportunities 
for community stakeholders to contribute their voices to conversations around risks and benefits. See EBRC’s 
Guiding Ethical Principles in Engineering Biology Research for more information.1  
iv A biological pathway is a stepwise series of interactions that result in an end product or outcome. A metabolic 
pathway, for example, begins with a given molecule/compound/metabolite that is converted by proteins into 
intermediate forms until a final product is formed. 
v A biological system refers to a unit of biology (e.g., a cell or an organ system) with many distinct, interacting parts. 
vi  While the scope of this paper is limited to security, defined herein as the deliberate misuse of biology to cause 
harm, the safety implications associated with engineering biology and artificial intelligence are also of concern. Well-
intentioned researchers could make mistakes that result in significant harm. Small errors in an autonomous 
laboratory system could compound over DBTL cycles. The safety of AI systems is important and requires further 
discussion and consideration. 
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Recognizing this potential for misuse, the Engineering Biology Research Consortium (EBRC) developed this 
white paper to identify and communicate key areas for security consideration at the intersection of engineering 
biology and AI. While consensus on every topic was not attainable, the EBRC community identified three key 
areas where this convergence may pose significant security concerns: de novo biological design, closed-loop 
autonomous laboratory systems, and natural language Large Language Models. Each of these areas is 
considered, in turn, with respect to anticipated uses and advances, arising security concerns, and opportunities 
to prevent and/or mitigate misuse. Finally, we recommend the establishment of an international forum on the 
intersection of engineering biology and artificial intelligence to identify potential security issues, develop 
approaches to the mitigation of identified issues, and build international consensus on the responsible 
development and use of these powerful tools. 

De Novo Biological Design Using Artificial Intelligence 
AI generally accelerates the fields to which it is applied. AI uses pre-existing data to learn trends that can be 
impossible, or take a very long time, for humans to identify. It can be applied to biological design at different 
biological scales, from molecular protein design and engineering to the design of metabolic pathways, to 
synthetic genomes, or even microbial consortia. 

Opportunities in the Application of Artificial Intelligence to De Novo Biological Design 
Enhanced Protein Design 
Proteins form the foundation of biological function and activity. Engineering biology researchers often use 
proteins to perform specific tasks, such as synthesizing or degrading a target compound, either in vitro or by 
engineering a protein into an existing organism. While nature offers an exquisite variety of naturally occurring 
proteins with an amazing array of functions, these naturally occurring proteins may not have the robust, 
efficient activity needed for laboratory or industrial use. Thus, researchers may work to optimize protein 
performance for specific applications or to design new proteins from scratch with a desired function that may 
not exist in nature. Both protein optimization and the design of entirely novel proteins can potentially be 
greatly enabled by AI, with parallel implications for security. 

Researchers have previously been able to improve protein performance for desired purposes through 
approaches like structure-guided design or directed evolution. But AI can yield superior designs more quickly 
(see, e.g., Lu et al., 2022).2 While humans are generally poor at identifying such complex relationships, AI excels 
at it, and AI “sequence-to-function” or “genotype-to-phenotype” algorithms can be trained on preexisting data 
relating known protein amino acid sequences and 3-D structures to biological function. AI-generated 
predictions for sequence substitutions or even entirely new segments, domains, or structures can lead to newly 
optimized functions. However, a protein’s function and activity are dependent upon the molecules with which 
it interacts. Molecular modeling tools such as Rosetta are advancing capabilities for understanding how small 
molecules bind to proteins and how proteins interact with other proteins.3 Greater understanding and 
modeling of these interactions and molecular interfaces will greatly improve protein design and optimization 
capabilities. Together, these AI-enabled capabilities will greatly accelerate the DBTL cycle for the discovery of 
improved functionality, irrespective of whether the desired outcome is protein stability, antibody or receptor 
binding, catalytic activity, immunogenicity, or even higher order functions such as viral tropism.vii To date, AI 
has been used effectively to optimize protein function, structure, and other characteristics and, given recent 

 
vii Viral tropism refers to the capability of a virus to infect a particular cell, tissue, or host types, e.g., to infect the 
respiratory tract. 
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advances, the re-design or de novo design of proteins for entirely new functions will likely soon become 
routine.2,4,5 

Design of metabolic pathways, genomes, and microbial consortia 
Designing larger biological systems, such as metabolic pathways, genomes, and microbial consortia, is more 
complex than de novo protein design. Metabolic pathway engineering expands upon individual protein 
engineering to drive multiple enzymesviii to work sequentially to convert a given molecular input to a given 
output. Often, each enzyme must be optimized to fine-tune its activity. Genetic regulatory elements, such as 
promoters and enhancers, and/or inducible expression systems may also need to be optimized, as they 
regulate when and how specific proteins are made. The molecular output of an engineered metabolic pathway 
could be something currently synthesized using synthetic chemistry or inefficient biological processes, or even 
a novel compound, perhaps identified for a given purpose with the assistance of AI. Highly engineered / 
rewritten genomes are even more complex,6 and in the future, researchers will likely be able to design novel 
synthetic cells; in either case, all the components needed for cellular function must be present in addition to 
the capabilities for which the cell is designed.7 At an even larger scale, microbial consortia may be designed to 
leverage the unique genetic capabilities of microbial community members to spatially and temporally control, 
for example, carbon sequestration or environmental nutrient availability.8,9  

AI is enabling—and will undoubtedly continue to enable—progress in the design of these higher order 
biological systems.10–12 However, AI-supported design of biological systems is less well developed than AI-
supported protein design, due in large part to the higher complexity of systems and associated challenges with 
generating high-dimensional, integrated training data of sufficient quality.13,14 Biological systems are dynamic, 
influenced by many factors such as the expression of other genes (e.g., transcription factors or enzymes that 
compete for pathway intermediates), the availability of cofactors, the presence of other metabolites that 
impact metabolic flux, growth media and conditions, etc. Measuring these dynamic factors over time in a 
biological system can be challenging, but ample, high-quality, well-organized data of this type is important for 
training broadly-capable models.15 AI-supported design of biological systems is certainly improving and will 
continue to do so as training data improves, but also as a result of strategies to build more data-efficient 
models.16 

Security Concerns Associated with De Novo Biological Design Using Artificial Intelligence 
Advances in AI-assisted biodesign do not necessarily pose entirely novel security risks. Rather, just as AI can 
accelerate the development of beneficial applications of engineering biology, it may also accelerate nefarious 
applications. For example, a nefarious lab employee working to fine tune a pathogen virulence factor for 
human immune evasion or weaponize a pest or pathogen of a key agricultural species, might, with AI-assisted 
design, obviate the need for several DBTL cycles. As a result, such a bad actor would spend fewer hours in the 
lab working on such an unsanctioned project and would use fewer resources, resulting in a lower likelihood of 
raising suspicion. This reduced chance of detection—real or perceived—coupled with greater confidence in 
early designs might also result in more individuals choosing to attempt such work.17 Other potential bad actors, 
such as nation-states or ideological groups, may similarly be more interested in the pursuit of harmful uses of 
biology if or as AI-enabled biodesign increases the likelihood of “successful” research endeavors that require 
less expertise and/or resources. 

 
viii An enzyme is a particular type of protein that converts an input to a product. 
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Concerns also arise from the possibility that AI will facilitate and enhance a nefarious actor’s capability to work 
around established safety and security systems. Currently, voluntary screening of orders and customers 
purchasing synthetic DNA helps ensure that highly concerning sequences cannot be obtained without cause. 
This barrier between the design space and the physical realm is extremely important; designing something 
catastrophic in silicoix does no direct harm if the biology cannot be built in the physical world. However, as AI 
tools are better able to elucidate sequence-to-function relationships, DNA may be designed to have low—or 
no—sequence identity to any known sequence of concern, yet still carry out a concerning function. In such 
cases, the DNA synthesis company may be completely unaware of the function encoded by the sequence and 
ship the DNA without further review (see One Step Ahead, below). 

Preventing and Mitigating Misuse of De Novo Biological Design Using Artificial Intelligence 
It may be tempting to restrict the development of these AI-enabled design capabilities. However, given the 
open-source nature of these tools and their development and use world-wide, it would be impossible to do so 
effectively. Such efforts would have limited, if any, impact on security but would certainly impede scientific 
progress. Furthermore, the restriction in the use of these AI models could prevent smaller laboratories or even 
start-ups from entering the biotechnology market. Restrictions developed in the United States, even with 
support and buy-in from allied nations, would be unlikely to be upheld globally, and the U.S. would risk losing 
its position of global leadership in biomedical and biotechnology-related fields. 

Fortunately, several risk mitigation approaches can and should be considered and/or used across the research 
and development pipeline. For instance, the barriers between digital biodesign and physical biological 
materials could be maintained and strengthened over time. Individual researchers and the entire life sciences 
research community can become more attentive to security and recognize potential concerns earlier enough to 
enable intervention. More sophisticated attribution methods could serve as a deterrent, and models 
themselves could potentially be designed to avoid certain biodesign spaces. 

One step ahead: Integrating sequence-to-function algorithms into security pipelines 
Companies that use nucleic acid or amino acid sequence screening in their pipelinesx for security will need to 
constantly be aware of improvements to function-to-sequence AI models. To ensure these companies maintain 
advantage over those who would misuse such models, resources (both public and private) must be put into AI 
models capable of predicting risk in novel sequences. Models built to classify a sequence as “harmful” or “not 
harmful,” like those that could be used by these companies, would be less computationally expensive to build, 
use, and maintain than models that generate entirely new sequences or try to predict exact function. As such, 
companies, if supported, should be able to build and maintain the capability to detect novel sequences that 
could be used to cause harm. Similar classifying methods are used to catch fraud and E-mail spam (e.g., 
“spam” or “not spam”). However, in the cases of fraud and E-mail spam, models benefit and “learn” from the 
many, many attempts to bypass them. The number of attempts to bypass sequence screening algorithms is far 
fewer in number. This rarity of attempts means there is very little positive case training data. Uneven training 
data makes it difficult to build models with high specificity, and non-specific models raise many false positive 
alerts. Alternatively, models that never or rarely alert operators of potentially concerning, no/low-homology 
sequences may, in reality, be missing sequences on which they should alert. Biosecurity screen operators have 
no way of knowing if a lack of system alerts is a result of insufficient screening capabilities or because no 

 
ix An in silico experiment is one conducted using computer modeling or simulation. 
x  Opportunities for other product and service providers (e.g., plasmid repositories, contract research and 
manufacturing organizations, cloud laboratories) to implement screening should also be explored. 
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relevant sequences of concern are being ordered. Therefore, USG should invest in—and work with the 
scientific community on—efforts to make sequence screening tools that can recognize likely harmful 
functions from protein sequences, consider financial incentives to enable DNA synthesis providers to use 
such models, and support the development of capabilities to assess screening systems. 

Community Awareness and Attention 
 The development of high-risk biological materials, such as highly transmissible human pathogens, almost 
uniformly requires certain experimental workflows. Such experimental workflows involve human or human-
like models of pathogen infection and high-throughput sorting or screening measurements. The development 
of highly transmissible pathogens requires the engineering of viral vectors that survive aerosolization. 
Experimental workflows that utilize such vectors involve specialized steps involving lipid encapsulation and/or 
creating emulsions, using large quantities of purified, human-like lipids. While there are plenty of legitimate 
reasons to use such experimental workflows, community awareness of the research occurring in one’s lab or in 
adjacent labs may lead to useful observations of unexpected or unusual research practices. Federal law 
enforcement officers, such as FBI Weapons of Mass Destruction Coordinators, should continue to build 
relationships with engineering biology community members and other relevant research communities to 
reduce barriers to discussing concerns. Researchers should receive training from their institutions or other 
entities on appropriate actions in response to potentially concerning observations, while being careful to guard 
against bias and discrimination. 

AI for Enhanced Attribution Capabilities 
A nefarious actor(s) may be deterred from misusing biology if they perceive a high likelihood of being caught. 
Thus, capabilities for the attribution of engineered genetic sequences to given laboratories or organizations are 
worth pursuing. These approaches take advantage of the observation that individual laboratories often make 
consistent and unique decisions in their plasmid design and construction, such as cloning methods used, 
selection method, reporters, and other small choices that, in combination, leave a lab signature on a plasmid. 
Models can leverage plasmid repositories such as Addgene, which holds over 135,000 plasmids developed from 
over 5,700 labs around the world and distributes them to other researchers.18,19 Advances in attribution 
capabilities are being made quickly, supported by endeavors such as the Genetic Engineering Attribution 
Challenge.20 Like others, this approach is imperfect, as i) plasmids are regularly shared and distributed amongst 
scientists and ii) such models could be used to fine-tune a design that ultimately deflects responsibility from 
one source or points falsely to a source. 

Security by Design 
After decades of research describing protein sequences and functions, available data are sufficient and 
computational capabilities have advanced to the point that sophisticated AI models can be built for protein 
design. Current models for biodesign are best at interpolation, meaning they work well within the realm of data 
they have been trained on. They are generally weak at extrapolating into sequence and function spaces missing 
from their training sets. Thus, if model developers agree to withhold from their training data certain sequences 
and functions that are known only to create or worsen hazardous outcomes, it may be possible to minimize the 
adverse advantages conferred by AI-aided biological design in certain hazardous function spaces.  

In reality, such an approach might have limited utility. A field-wide norm would need to be established wherein 
most or all model developers would agree to voluntarily withhold certain training data, deliberately decreasing 
the performance of their models in certain biorisk spaces. Doing so might inadvertently create a considerable 
safety concern. Without any model-capability to define and recognize a threat space, a well-intentioned 
researcher might build and test AI-generated design(s) that are or could be harmful. And, even if such a norm 
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were established and followed, many models would still be open source, as knowledge sharing is a bedrock 
principle of global science. Thus, in many instances, minimal additional tuning with a few relevant examples of 
a novel protein fold or function of interest could improve the model such that a bad actor could explore desired 
biothreat spaces. Models will continue to improve at extrapolation as well, perhaps rendering this approach 
ineffective. 

The prevalence of open-source models also limits the utility of access controls.21 If the users of biodesign 
models were screened, it could be possible to block access to individuals without a credential or legitimate 
need. Of course, defining legitimacy is challenging and, particularly in the biodesign space, could discourage 
valuable public engagement with biology. Instead of user screening, tool developers could require users to sign 
in with a username and password and potentially track their queries to support retrospective attribution 
capabilities. 

Another means to achieve security through design is through a widespread acknowledgement of the risks of AI 
as applied to engineering biology. One AI company, Anthropic, has developed “AI Safety Levels (ASL) for 
addressing catastrophic risks, modeled loosely after the US government’s biosafety level (BSL) standards for 
handling of dangerous biological materials.”22  Under the ASL process, models are evaluated for risk and 
appropriate safety, security, and operational standards are then put into place. Perhaps model risk evaluation 
could be useful in biodesign as well. 

Closed-Loop, Autonomous Biological Research 
Recently, there has been increased interest in the development of AI systems coupled to robotics that can 
autonomously drive research. In such systems, user-defined parameters and existing model(s) are used to 
develop a hypothesis which is tested autonomously by robotic systems. Robotics systems generate 
experimental data which is fed back into the AI model. The model then recommends and tests a new 
hypothesis. This type of “closed-loop autonomous lab,” often referred to as a “self-driving lab,” can 
theoretically operate indefinitely without human input or intervention. This approach to research has the 
potential to enable the investigation of seemingly intractable questions much more rapidly and efficiently than 
previously possible.23 It can drive rapid iterations of the DBTL cycle while benefiting from AI-enabled design, 
data analysis, and hypothesis refinement. By taking humans out of the experimentation process, consistency 
and reproducibility may increase, and progress could be made while alleviating unreasonable expectations of 
human researchers (e.g., AI models and robots do not require sleep or time out of the lab). 

Security Concerns Associated with Closed-Loop, Autonomous Biological Research 
As with biological design, advances in the use of closed-loop, autonomous biological research laboratories 
could also be used by bad actor(s). A bad actor could take advantage of autonomous research equipment i) as 
an employee of a laboratory with regular access to such equipment; ii) as a customer of a cloud laboratory;xi iii) 
by hacking into laboratory systems or cloud labs, thereby gaining remote control of robotic equipment; or iv) as 
a nation-state or other well-funded organization with the resources to construct and use such a lab system for 
harmful purposes. 

For an insider, less time spent personally experimenting might mean less likelihood of being noticed engaging 
in suspicious activity. While labs generally have record-keeping practices and sign-up requirements for the use 

 
xi Cloud laboratories are heavily automated facilities that enable researchers to remotely design, run, and monitor 
experimental protocols. 
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of such resource-intensive equipment, laboratory personnel could misrepresent the purpose of their 
equipment, or an approved experiment could be hijacked and redirected. Cloud laboratories are still relatively 
new and the extent to which they will become widely used and accessible is unknown. Customers could 
misrepresent themselves and/or the nature of their work to outsource the necessary technical development. In 
addition, any internet-connected autonomous system could be hacked and potentially reprogrammed to 
develop an unsanctioned, harmful product. However, the hacker would need extensive knowledge of the 
physical equipment, reagents, and samples present to be successful. Finally, a well-resourced organization or 
nation may have the capacity to construct such laboratories and use them to make rapid progress toward the 
development and optimization of a biological weapon. 

Preventing and Mitigating Misuse of Closed-Loop Autonomous Biological Research 
Human interventions and AI-driven strategies can minimize the biorisks associated with autonomous 
laboratories. A basic intervention at an individual lab or foundry-level might include requiring human manual 
approval before the “build” phase of each DBTL cycle, or after some number of cycles appropriate to the level 
of risk posed by a given experiment. Some robotics systems could require multiple individuals to sign off on an 
experimental set-up and trajectory before beginning work. At the cloud lab level, no standards, guidelines, or 
best-practices exist (to our knowledge) describing responsible security measures. Anecdotally, some cloud labs 
are beginning to follow the example of gene synthesis companies, for example by verifying received samples 
(e.g., through sequencing), screening customers, using robust network protection and firewalls to prevent 
hacking, and/or other steps as warranted.  

A more complex safeguarding measure might include the development of metrics used to estimate the toxicity 
or potential harm of an experimental product (e.g., novel metabolite, engineered protein, DNA sequence) to 
humans, plants, and animals, or a subset thereof, before initiating a new DBTL cycle. If such an approach were 
to be deemed useful and pursued, it would be important to isolate such safeguarding systems from 
experimental systems so that if an experimental system were compromised, safeguards would remain 
trustworthy.  

Closed-loop autonomous laboratory capabilities are still nascent. They are expensive and the extent to which 
they will be used over near- to mid-term time horizons is not yet clear. While it is therefore important not to 
overstate the current threat that they pose, it is also important not to wait for the industry to fully develop 
before articulating norms and best practices for security. Thus, USG should fund a collaborative effort to 
better understand the role such labs are likely to have going forward, security concerns that currently, or 
that may relatively soon, exist as a result, and provide recommendations and best practices for better 
safe-guarding their use. 

Large Language Models 
The progress of Large Language Models (LLMs) announced in the past year has yielded great public interest and 
also caused significant alarm. In the biological sciences, one concern is that LLMs will lower the level of 
expertise needed to develop a biological system that causes harm. Much discussion has resulted from a recent 
preprint describing that a class of MIT students, in one hour, queried ChatGPT and learned how reverse 
genetics can be used to synthesize pandemic pathogens; were shown protocols for such work; identified which 
DNA synthesis companies are not members of a consortium that requires its members to demonstrate their 
screening capabilities; and learned about the existence of contract research organizations, which can be 
contracted to perform experimental work.24 However, it is challenging to know just how much more quickly 
students were able to learn and access this information with ChatGPT than they could have using search 
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engines. It is also not clear whether the time saved would make a significant difference to a motivated bad 
actor. The existence of the preprint itself may now negate some of the advantages a bad actor may have had as 
a result of using an LLM.  

While LLMs can clearly lower some barriers to knowledge acquisition, helping a bad actor learn about dual-use 
areas of biology, how biology might be misused, and instructions for doing so,25 questions remain as to if, or 
the extent to which, this information could actually enable the misuse of biology. Of all the barriers (e.g., 
procurement of supplies, reagents, and equipment; laboratory skills) that exist to misusing biology, how 
substantial is the barrier of knowledge acquisition? What proportion of total time spent to get to a biological 
weapon is initial publicly available knowledge acquisition? Are LLMs uniquely enabling for a nefarious actor? 
Are LLMs able to describe not just how to build biology, but also how to weaponize it? To what degree is tacit 
knowledge required that cannot be communicated via LLM? And (how) will the answers to these questions 
change over short, medium, and long time horizons? 

Answers to these questions are not necessarily clear, and the research community is not in total agreement. 
Some concern may be warranted. More so than enabling experimentally naive actors to misuse biology, LLMs 
could lower a barrier for someone who already has training in biological sciences just enough such that they 
pursue nefarious activity they otherwise would not have. For example, a bioinformatically illiterate graduate 
student could use an LLM for assistance using biodesign tools that require some proficiency in coding 
languages. An LLM could help a lab worker interface with a closed-loop autonomous research system. And an 
LLM may be useful in troubleshooting experimental challenges. However, effective misuse or weaponization of 
biology requires unique capabilities beyond just molecular biology or virology laboratory skills.26,27 For 
example, the weaponization of a pathogenic system or organism requires the design of a biological system that 
can maintain its infectivity in the wild, the production of that system at scale, the testing of its transmissibility 
and lethality (e.g. on animals or in human cell lines), and the successful introduction to the target 
population(s). This biology must be undertaken in the physical world. It requires biodesign, laboratory skills, 
equipment, materials, and tacit knowledge, the vast majority of which would be very challenging to learn just 
from reading AI-generated text. 

It is also worth noting that LLMs can very confidently err, or “hallucinate.”23 Legitimate researchers using LLMs 
to more quickly advance or troubleshoot their research may either be able to identify such hallucinations 
themselves or discuss the output of an LLM with colleagues before following the LLM’s directions. A nefarious 
non-state actor may not themselves have—or have co-conspirators—with sufficient knowledge to recognize 
misleading or inaccurate LLM responses, fortunately taking their efforts down counterproductive paths. This 
“tax” on effort to first follow, then detect as wrong, then reorient effort in a new direction, could place a 
nefarious actor at a distinct disadvantage in attempting to leverage LLMs.  

Efforts to build LLMs that withhold certain information from users have proven weak against “jailbreaking”xii 
attempts.28 Further research and red-teaming of such approaches may enhance these capabilities, and a tiered 
access system may ultimately provide a useful, though imperfect, barrier. Perhaps LLMs could be built to alert 
their developers when certain types of queries are received, or when certain types of responses are given. 
Knowledge is and always will be difficult to control. Therefore, safeguards for physical materials such as nucleic 
acids must be prioritized. Models that can help synthesis companies reduce the risk of biodesign tools, policies 

 
xii Jailbreaking refers to attempts to bypass safety and/or security measures to gain access to protected information. 
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that support screening, and the identification of other physical realms where security measures might be useful 
and appropriate must be prioritized, supported, and strengthened. 

Next Steps: A Path Forward 
Given the complexity of the topic, the rapid advancement of these technologies, and the international nature of 
the potential risks and benefits, we suggest that a regularly-convened international forum or initiative be 
established to: 

i) identify emerging security concerns associated with the convergence of engineering biology and AI;  
ii) conduct horizon scanning to predict the trajectory of engineering biology and AI in the coming years;  
iii) consider how associated risks may be differentially borne across communities and regions of the 
world;  
iv) develop appropriate guidelines, policies, and/or best practices—along with tools and strategies for 
their implementation—for determining and preventing deliberate misuse; and  
v) over time, evaluate and iterate upon implemented security practices.  

Others have also recognized the importance of such fora.21,29 Convenings should be organized and held at a 
regular cadence to update expected timelines for achieving specific capabilities, reinforce collaborative 
relationships, develop best security practices as the biorisk space evolves, and evaluate previously adopted 
policies and practices. They should be hosted by the private sector and/or academia with the support of 
governments and international organizations such as the World Economic Forum (WEF) or Organization for 
Economic Cooperation and Development (OECD).  

Stakeholder participants in such an initiative should minimally include members of the AI and engineering 
biology academic and industry communities, (bio)security experts, and government partners. Furthermore, 
where possible, community representatives should be included and/or consulted in recognition that different 
stakeholder populations may view risks and benefits of technologies very differently. 

Academic and industry stakeholders might aim to develop and disseminate community best practices within 
the field. Simultaneously, policymakers must be active participants so that frameworks, regulatory structures, 
standards, and government guidance developed by individual countries can be aligned to technical 
capabilities. Such government frameworks should also, whenever possible, support and reinforce each other to 
avoid fragmentation, confusion, and exploitable loopholes. Community representatives should be consulted in 
these processes in appreciation that decisions about technology use and governance have global impacts on 
lived experiences and even existing social, economic, and political systems. 

Conclusion 
Policymakers, researchers, and other stakeholders are giving considerable attention to the power of AI, 
particularly in conjunction with other technologies such as engineering biology. Collaborative efforts to 
identify the security concerns associated with the intersection of these technologies are important, as are 
efforts to contextualize the relative or actual risk they pose. At present, members of the technical research 
community associated with EBRC identified de novo biological design, closed loop autonomous laboratories, 
and natural language Large Language Models as areas of potential security concern at the intersection of AI 
and engineering biology. Still, consensus on the extent to which each is enabling for a nefarious actor—now 
and in the future—and appropriate prevention and mitigation strategies, is challenging to achieve. Fortunately, 
unanimous consensus is not necessary for progress. Future efforts to bring people together on this topic will 
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need to recognize the value of different stakeholder perspectives and seize opportunities to prevent, deter, and 
mitigate the misuse of AI-enabled engineering biology that can be widely agreed upon. In doing so, 
stakeholders must actively consider the harms that may be caused and the lives that may be lost through an 
overly-restrictive approach to navigating these concerns. Ultimately, the research community is investing its 
time and attention in these technologies because of their capacity to enable progress in engineering biology, 
leading to a healthier, more sustainable future for us all. Together, we can realize that future while identifying 
and implementing reasonable safeguards to minimize the potential for misuse. 
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