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The Engineering Biology Research Consortium (EBRC) is a nonprofit, public-private partnership that
brings together scientists, engineers, and industry leaders to advance the field of engineering biology
to address national and global needs. EBRC’'s members include experts from over 90 universities
and research institutes, alongside leaders from more than 25 companies, philanthropies, and other
organizations. Working closely with partners across the engineering biology ecosystem, EBRC
focuses on four key areas: Research Roadmapping, Policy & International Engagement, Education,
and Security.

1. How should DOE best mobilize National Laboratories to partner with industry sectors within
the United States to form a public-private consortium to curate the scientific data of the DOE
across the National Laboratory complex so that the data is structured, cleaned, and
preprocessed in a way that makes it suitable for use in Al models? How can DOE anonymize
and desensitize data and/or make use of privacy-preserving Al training methods to enable Al
model development using sensitive or proprietary data?

DOE should partner with the Center for Al Standards and Innovation (CAISI) and other
expert stakeholders from academia and industry to develop Al-ready data standards.
High-quality, reproducible, and interoperable data is critical for developing next-generation Al
tools and models. In order to make use of the existing data within DOE and ensure that new
data is Al-ready, clear and robust standards are necessary. To accomplish this, DOE should
partner with NIST’s CAISI to identify and engage experts in data science and Al model
training from across academia and industry to develop these standards. These standards
should include specifications for:

Provenance

Uncertainty metrics

Rich metadata
Domain-specific annotations
Common ontologies
Formatting

Performance metrics

DOE should centralize as much data as possible while creating federated infrastructure for
sensitive or proprietary data. In order for the data housed across all of DOE’s National
Laboratories to be maximally useful, a proportion of non-sensitive DOE data should be
identified by engaging stakeholders within the National Laboratories and incorporated into a
centralized repository that is accessible to verified academic and private-sector researchers..
Centralization greatly improves the usability of the data and efficiency of its use, removing
any latency associated with retrieving data from multiple sources. Sensitive, classified, and
otherwise excluded DOE data as well as privately-owned proprietary data should be
incorporated into a federated infrastructure managed by the DOE and made available



through a monitored managed access system. Federation greatly limits the complexity of
models that can be trained on such a system. However, a federated network of data is
advantageous for governance, tracking provenance, distribution of maintenance cost and
labor, and overall security. By federating rather than centralizing, the institutions that
originally generated the data maintain control over their own data, which allows each
institution to ensure compliance with legal constraints and maintain security around
sensitive data. Centralization also increases the risk of single-point security breaches.
Therefore, DOE should create infrastructure for both centralized and federating data to
maintain security and compliance but enable broader integration and utility.

DOE should coordinate with CAISI to develop risk-based categorization standards and
privacy systems for sensitive data and models. While DOE should prioritize making data as
accessible and open as possible, some data will require additional governance, particularly
with respect to sensitive or proprietary data. Therefore, DOE should develop standards for
performing risk-based categorization of data into discrete hazard levels, with an emphasis
on dual-use potential and private personal health information. Each level should be
connected to specific governance and risk mitigation mechanisms, such as tiered access
control, encryption, secure compute environments, and cybersecurity standards. DOE should
draw on existing best practices for securing these data, such as Crypt4GH for genomic data
encryption. Additionally, DOE should develop mechanisms to support model-to-data training
methods that would support model training on sensitive data without requiring data egress
outside of a secured environment.

DOE should explore incentive structures and privacy systems that would motivate private
companies to contribute data and/or models for use within the consortium. To maximize
the mutual benefit of a public-private partnership, DOE should explore mechanisms by which
private companies could be incentivized to contribute proprietary data and/or models to the
consortium. A major concern for most private companies will be protecting their proprietary
information from competitors. Therefore, DOE should explore mechanisms for federated
learning that would allow private companies to retain sovereignty over their data by locally
training models. DOE could incentivize participation by private companies by giving priority
access to new models to companies that contribute their data. Similar structures could be
constructed for incentivizing companies to share models by granting advance access to
data.

How should DOE best structure the public-private consortium to enable activities across a
range of scientific and technical disciplines, including partnerships with industry, to develop
self-improving Al models for science and engineering using DOE'’s data, potentially in
combination with data from other partners? Specific, related questions for consideration
include but are not limited to:

DOE should prioritize implementing general-purpose Al models for agentic Al workflows
that enable self-improving model training and chaining tools together. Advances from
leading developers like FutureHouse and Google have shown that the most effective way to
combine general-purpose Al models with specialized models is by implementing
general-purpose language and reasoning models as an agent that can call other specialized
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tools or models through APIs. This approach is advantageous over joint training or fine
tuning general-purpose models because it lends itself to greater modularity, does not require
multi-modal training, and limits the overall amount of training required. DOE could utilize
existing APIs like FutureHouse’s Aviary or utilize Model Context Protocol.

DOE should prioritize implementing self-improving Al models for biomanufacturing
applications. The most effective use cases for self-improving Al models will be those that
can be tested and evaluated through automated high-throughput experimentation.
Automated high-throughput experimentation will enable generation of large amounts of data
through experimentation that is more easily standardized and reproducible. These data can
then be used iteratively to fine-tune models and to inform subsequent rounds of
experimentation, both of which could also be automated. A critical component of this
automated system for self-improving Al models will be designing assays that can be
integrated into the automated experimentation platform for evaluating the performance of
the model. While computational benchmarks of performance will also be valuable,
performance on physical benchmarks should be prioritized and form the basis for improving
the capabilities of the model. Biomanufacturing is an area where methods for
high-throughput experimentation are already well-established and could benefit greatly
from self-improving Al models. This would enable advances and breakthroughs in key areas
such as novel fuel sources, biocatalysis, and novel materials among others.

How should DOE best provide Al models to the scientific community through programs and
infrastructure making use of cloud technologies to accelerate innovation in discovery
science and engineering for new energy technologies?

DOE should create infrastructure to support a low-cost cloud computing environment that
provides centralized access to an Al model toolbox that is connected to a federated
network of Al-ready data. Some of the major barriers to the use and adoption of Al models
and tools in scientific research are the lack of access to high-performance computing (HPC)
infrastructure and the expertise needed to implement these technologies. While many
well-resourced research institutions have dedicated HPC facilities and staff, smaller
institutions would benefit from low-cost access to HPC infrastructure and personnel.
Therefore, DOE should develop a low-cost cloud computing environment that could provide
access to a toolbox of Al models and tools. Priority should be given to researchers at
institutions that lack HPC infrastructure. This environment should also provide access to
the data curated and generated by the consortium.

DOE should continue to support existing training programs and create new training
opportunities with a focus on expanding computational literacy with experimentalists and
placing computational scientists within experimental research groups. Workforce
development is a critical component for accelerating innovation at the intersection of Al and
the life sciences. Current programs within DOE, like the Computational Science Graduate
Fellowship, have seen great success in training more than 425 students in applying
high-performance computing to science and engineering challenges. However, a critical gap
remains in expanding the use and application of computational tools within experimental
research groups, in particular with researchers at smaller institutions. To facilitate greater
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use and application of computational tools, DOE should create opportunities that support
interdisciplinary training, within and outside DOE facilities. These opportunities should give
experimentalists an opportunity to learn practical application-focused computational skills,
like Python for data analysis, interpretation of model outputs, recognizing model limitations
and failure modes, and basic command line skills. Similarly, opportunities should be created
for computational scientists to work in experimental research groups, where they can
identify application challenges, improve the usability of their tools, and provide advice for
data generation, standardization, and formatting for use in model training.



