Individual Members

  • Nils Averesch

    Nils is an Assistant Professor at the Department of Microbiology and Cell Science, University of Florida (UF). Before joining UF, Nils was a Research Engineer at the Department of Civil and Environmental Engineering, Stanford University and an Associate Scientist at NASA Ames Research Center, Space Science and Astrobiology Division. Nils holds a PhD in Metabolic Engineering from the University of Queensland, Australia and an engineer’s degree in Biochemical Engineering from the Technical University of Dortmund, Germany.

    Nils’ research comprises the rational engineering of microbial metabolism to increase the carbon efficiency of biochemical pathways for the assimilation of single-carbon compounds and the conversion thereof into advanced biomaterials. This serves the overarching goal to create a sustainable chemical industry on Earth “on the way” to new frontiers: developing circular production platforms based on microbial biotechnology could one day also support crewed long-duration space-exploration missions and -settlement.

  • Anna Duraj-Thatte

    Anna Duraj-Thatte received her Ph.D. from Georgia Institute of Technology, wherein she worked on protein engineering and directed evolution. Then she pursued her postdoctoral research at Wyss Institute, Harvard University. Dr. Duraj-Thatte’s research focuses on designing and developing novel strategies to produce smart engineered living materials (ELMs) by integrating the fields of synthetic biology, materials engineering, nanotechnology, and artificial intelligence (AI). Over the last eight years, she has been developing the field of ELMs by demonstrating one of the first examples of therapeutic living materials and macroscopic transient self-regenerating
    materials for environmental applications. Her research work has also been featured in global media outlets, including The New York Times, The Washington Post, Smithsonian Magazine, New Scientist, CBS Boston, and Science Alert. She received the Grand Prize in the American National Science Foundation (NSF) Idea Machine competition. She was also selected as a Deep Tech Pioneer and member of Harvard Innovation Lab’s Venture Incubation Program.

  • Elibio Rech

    Elibio Rech, a molecular engineer, geneticist, Researcher at EMBRAPA, and Director of the National Institute of Science and Technology in Synthetic Biology, developed gene transfer technologies to produce commercial genetically modified plant products. Aim to contribute to the design, construction, and engineering of synthetic genomes, cell-free protein expression, and building cell and synthetic genetic circuits, combining top-down and bottom-up approaches within the synergies and intersections of the recombinant DNA technology for synthetic domestication of specific traits from biodiversity.

  • Theresa Loveless

    Theresa Loveless received her Ph.D. in Cell Biology from UCSF, where she studied the molecular biology of DNA replication and the DNA damage response. As a postdoctoral researcher in synthetic biology, in the laboratory of Chang Liu at UC Irvine, she made DNA recorders, synthetic biology tools that transform transient events in a cell’s life into durable changes in a small “recording” region of the cell’s genome. Theresa just started her independent laboratory in the Department of BioSciences at Rice University. The goal of the lab is to make DNA recorders that document the activation history of many signaling pathways in parallel, in physiological settings, over the whole timescale of developmental processes. These recorders will make it possible to study how transient events that are experienced heterogeneously across populations of cells affect the later behavior of each cell. Theresa is a Leading Edge Fellow and a MOSAIC K99/R00 Scholar.

  • Janet Standeven

    An educator with 28 years of classroom experience in Core Sciences, Social Sciences and Biotechnology. Founded the Lambert iGEM program in 2012. In 2022 Lambert’s team was named the Grand Prize Winner of the iGEM Jamboree. The iGEM competition is the leading collegiate competition in the field of synthetic biology. She is a 2022 recipient of a NIH SEPA grant with Dr. Bhamla of Georgia Institute of Technology. In collaboration with members of the Bhamla lab she leads students in research and development of synthetic biology projects that also include hardware and software components. Ongoing projects include the ElectroPen, a 23 cent electroporator and other frugal devices for extraction of DNA and quantification of data.
    Ms. Standeven received a BA in Anthropology and Social Studies Teaching Certificate from Millersville University of Pennsylvania. She earned her Master of Chemical Life Science from the University of Maryland in 2013. During her master’s studies she was a recipient of a G.I.F.T. fellowship with the Styczynski Group at Georgia Institute of Technology and subsequently received RET, support with the Styczynski group from 2014-2018. She is a recipient of numerous teaching awards and recognitions including Teacher of the Year in 2011 for Riverwatch Middle School, 2018 for Lambert High School, Forsyth County School STAR teacher in 2019 and 2023, in addition to being recognized as Biotechnology Teacher of the Year in Georgia for 2016. She was an attendee at the White House Bioeconomy Summit in 2019. She currently participates on the Human Practices committee for the iGEM foundation and serves as a Master Teacher for GABIO’s Rural Teacher Training Initiative.

  • Gozde Demirer

    Gozde was born and raised in Istanbul, Turkey and received her B.S. in Chemical and Biological Engineering from Koc University in 2015. Gozde completed her Chemical Engineering Ph.D. at UC Berkeley with Prof. Markita Landry in 2020. During her Ph.D. studies, she developed nanotechnologies for plant genetic engineering. For her postdoctoral work, Gozde joined Prof. Siobhan Brady’s lab at UC Davis, where she studied nutrient use efficiency of tomato and developed high-throughput functional genomics tools to study transcriptional regulation in crops.

  • Joshua Atkinson

    Dr. Atkinson’s research aims to use approaches from synthetic biology, protein engineering, biophysics and electrochemistry to understand and control how microbes and proteins transport electrons. The Atkinson Lab seeks to elucidate the critical role electron transport plays in energy and information processing in cells and microbial communities and to use this knowledge to engineer new biotechnologies that address societal challenges in sustainability, environmental monitoring & remediation, chemical synthesis, and resource recovery & extraction. Areas of current emphasis are the development and application of design rules for (i) how microorganisms use proteins to regulate electron transfer in metabolic networks, (ii) how electron flows shape the structure of microbial communities that impact geochemical cycles, and (iii) how living electronic materials can be built that couple the information processing and catalytic capabilities of biology with electrochemical devices.

  • Ilenne Del Valle

    Ilenne Del Valle is a Research Staff Scientist at Oak Ridge National Laboratory. She earned her Bachelor’s degree in Biochemistry from the University of Chile and her Ph.D. in Systems, Synthetic, and Physical Biology from Rice University, where she worked in the Silberg and Masiello lab. Following her Ph.D., she served as a postdoctoral researcher in the Eckert lab at ORNL. Currently, her research focuses on engineering new synthetic biology tools to facilitate ecosystem engineering, with a specific emphasis on environmental, energy, and sustainability applications.

  • Leili Rohani

    Dr. Leili Rohani is a Stem Cell Scientist at the School of Biomedical Engineering, University of British Columbia, and upcoming Research Scientist at MIT Synthetic Biology Center and Department of Biological Engineering. Her research has been focused on stem cells, regenerative medicine, cell therapy, and cell-fate engineering with the intent to provide a platform for future gene and precision therapies for heart diseases. She is passionate about combining tissue engineering, single-nuclei RNA sequencing and synthetic biology tools to create a human single cell atlas of heart disease as a basis for understanding, diagnosing, monitoring, and treating heart diseases. Her end goal is to look at the SynBio platform (tissue engineering, single nuclei RNAseq, synthetic biology) as a new vocabulary for disease studies to determine the ways in which cells and disease genes act, which cells are disrupted in disease, which programs change in them, what mechanisms underlie their (dis)regulation, how their cell-cell communications are affected, and what would be the impact of therapies. Beyond her research, she is passionate about science communication, networking, and collaboration.

  • Mart Loog

    Mart Loog is a professor of molecular systems biology. Mart received Ph.D. in medicinal biochemistry from Uppsala University, Sweden in 2002, followed by postdoctoral training at the University of California, San Francisco. In 2006 Mart established his laboratory at the newly established Institute of Technology. He has received several international fellowships and awards including The Wellcome Trust Senior International Fellowship and a startup research grant from European Molecular Biology Organization (EMBO) and Howard Hughes Medical Institute (HHMI). In 2012 he received Estonian National Science Prize in chemistry and molecular biology. In 2015 he was awarded the European Research Council (ERC) Consolidator Grant and became a principal coordinator of H2020 an Horizon Europe projects SynBioTEC (2016), GasFermTEC (2018), and DigiBio (2023) to establish the multidisciplinary Estonian Centre for Bioengineering. Mart’s research directions include regulation of the eukaryotic cell cycle, enzymology of cyclin-dependent kinases, multisite phosphorylation processing, and synthetic biology of signaling circuit design. He is leading a laboratory of 20 people and undergraduate and master’s programs in bioengineering.

  • Vikramaditya Yadav

    Dr. Vikramaditya G. Yadav is an Associate Professor at the University of British Columbia (UBC), where he directs Canada’s premier program in Sustainable Process Engineering. He has made notable contributions to research, education, commercialization and regulation of synthetic biology and environmental biotechnology. Dr. Yadav also founded Metabolik Technologies Inc., which was acquired by Allonnia, a Bill Gates-backed company, and is currently the Chief Executive Officer of Tersa Earth Innovations, a mining biotechnology company. He is also the Chief Technology Officer of React Zero Carbon, a venture catalyst and capital fund for net zero solutions, and Hilo Bio, a performance biomaterials company. He was recognized as one of Canada’s Top 40 Under 40 in 2021 and received UBC’s highest teaching accolade, the Killam Prize, in 2023.

  • Keith Tyo

    Keith E.J. Tyo is associate professor of Chemical and Biological Engineering and (by courtesy) Microbiology and Immunology at Northwestern University and founding member of the Center for Synthetic Biology. Keith received his undergraduate degree from West Virginia University, PhD from Massachusetts Institute of Technology and was a NIH National Research Service Award Postdoctoral Fellow at Chalmers University, Sweden.

    Keith’s research interests are at the intersection of Synthetic Biology, Sustainability, and Global Health. His group is focused on understanding and engineering microbial metabolism to make fuels and chemicals from renewable and waste carbon sources. His group uses genetics, metabolomics, and computational tools to guide these efforts. His second focus is on engineering protein-based biosensors that enable low-cost, point-of-care detection of important clinical biomarkers in impoverished, rural settings. His work has been published in Science and Nature Biotechnology, and has been received the NSF CAREER award.

  • Milan Mrksich

  • Cătălin Voiniciuc

    y research in Vancouver (Canada), Jülich (Germany) and Versailles (France) identified novel plant genes controlling the structure of extracellular matrix polysaccharides. After moving to Düsseldorf in May 2016, I applied yeast Synthetic Biology (SynBio) to reconstruct plant polysaccharides. From January 2019 to February 2022, I led an independent research group at IPB Halle to gain further mechanistic insight into the synthesis of matrix polysaccharides. In March 2022, I joined the University of Florida to lead its Plant SynBio efforts and further the Designer Glycans mission.

  • Sheela Vemu

    Associate Professor at Biology, Waubonsee Community College, IL. I am a Bio QUEST curriculum consortium fellow, contributor to the development of the Scientific Teaching Course from the National Institute of Scientific Teaching (NIST) and Editorial Board member for CBE-Life Sciences Education (LSE) journal.My doctoral training is in Pharmacology and Molecular biology. Recently, my scholarship has shifted to science education. I enjoy working with all students, especially freshman/sophomores from diverse backgrounds in biology education research projects in the aspects of effective study strategies and metacognition. I am passionate about implementing Course -Based Undergraduate Experiences (CUREs) with the lens of a quantitative data literacy to foster inclusion in a community college classroom. I continue to use project based assignments and data interpretation modules with scientific contributions of scientists who are members of historically excluded groups. Teaching is the way I connect with people, especially young people. I learn so much from them in trying to figure out how to help them learn.I enjoyed co-leading the first ASCN Inclusive STEM Teaching Project ASCN Learning community in 2021. In my workings with various groups, I learned the skills of building learning communities to foster shared common goals and attitudes while promoting an equitable participation of all members. It gave me a platform to bring the voices of the community college landscape with STEM practitioners from other institution types. The opportunities to be informed by the lived perspectives from different stakeholders, led me to ponder about the aspects of implementing and scaling change. I see myself as a change agent at the grassroots level.

  • Kaitlin Dailey

    I am a Research Instructor at the University of Nebraska Medical Center’s Eppley Institute for Cancer Research, hosted by the labs of Dr. Michael (Tony) Hollingsworth (cancer biology, immunology) and Dr. Ken Bayles (bacterial genetics, microbiology). During my doctoral studies, I became fascinated with the many advantages oncolytic bacteria have over traditional therapeutics. As a result, I pursued specific training in genetic engineering and anaerobic bacteria. I performed ground-breaking studies, accomplishing the first CRISPR-mediated modification of Clostridium novyi-NT and established methodologies that have added to the field of biologic therapeutics. I chose post-doctorate studies at UNMC to further my training in immunology, cancer models, bacterial genetics, and microbiology. My long-term career goal is to establish a diverse and equitable academic research lab focused on genetically engineering single celled organisms for pharmaceutical and biofuel development. Additionally, I ascribe to the teacher/scholar model and intend to use my expertise to generate graduate and undergraduate courses as well as to mentor students in a laboratory setting – while fostering inclusive environments in both circumstances.

  • Devin Camenares

    I have been interested in synthetic biology for over a decade – it has motivated much of my academic career and is highlighted by involvement in iGEM. Attending the Jamboree in 2006, I returned as a volunteer in 2013 and 2014, after completing a PhD in Molecular Biology (Studying trans-translation in E. coli under Dr. Wali Karzai at Stony Brook University). I have been the primary mentor for teams at the two institutions where I taught; Kingsborough Community College (2016, 2017) and Alma College (2019 to present). I have also participated in the iGEM community in other ways, acting as a judge in 2017 and 2018, and an After iGEM committee member working on the EduHall project and, most recently, the SynBio-101 project. In addition to iGEM and other synthetic biology research, I have active research in bioinformatics, self-taught in Java and other languages.
    When I am not in the lab, meetings, or teaching, I am either spending time with my wife or daughter, or I am on the tennis courts or at the chess board (I used to be a USCF rated expert and still an avid player).

  • Jorge Marchand

    Dr. Jorge Marchand is an Assistant Professor at the University of Washington in the Department of Chemical Engineering. He did his PhD work at the University of California, Berkeley in the research group of Michelle Chang, where he worked on the discovery of biosynthetic pathways for making terminal alkyne amino acids. His postdoctoral work was done at Harvard Medical School with the George Church group. Here, he focused on engineering translation and developing new sequencing technologies to study tRNA. He now runs an independent research group that aims to utilize fundamental approaches in synthetic biology, chemical biology, biosynthesis, and biomolecular engineering for reprogramming life at the nucleic acid level.

  • Ania-Ariadna Baetica

    Dr. Ania-Ariadna Baetica is an Assistant Professor in the Department of Mechanical Engineering and Mechanics at Drexel University. She received her BA degree from Princeton University in 2012 and her PhD from California Institute of Technology in 2018. Following her degrees, she was a postdoctoral scholar at the University of California San Francisco.

    Dr. Baetica’s group leverages control theory along with systems biology, synthetic biology, and computational science to solve biotechnological and medical challenges. Her group designs robust and modular synthetic biological circuits by incorporating layered feedback mechanisms.

  • Back to top ⇑