Individual Members

  • Robert Friedman

    Robert Friedman is Vice President for Policy and University Relations at the J. Craig Venter Institute (JCVI). Friedman directs JCVI’s Policy Center, which examines the societal and policy implications of genomics, synthetic biology, and other areas of modern biology and biomedicine. Friedman is also a Professor of Practice at the UC San Diego School of Global Policy and Strategy (GPS) and is a member of the Ad Hoc Technical Expert Group on Synthetic Biology of the international Convention on Biological Diversity.

    Earlier, Friedman was a Senior Associate at the Office of Technology Assessment, U.S. Congress (OTA). For 16 years, he advised Congressional committees on issues involving science and technology policy. Friedman received his Ph.D. from the University of Wisconsin, Madison, in Ecological Systems Analysis, concentrating in ecology, environmental engineering, and systems analysis. He is a Fellow of the American Association for the Advancement of Science.

  • Philip Romero

    Philip Romero is an Assistant Professor in Biochemistry and Chemical & Biological Engineering at UW-Madison.  He received his PhD in Biochemistry from Caltech and conducted postdoctoral research at UCSF.  The Romero laboratory applies tools from statistics and machine learning to design proteins for broad applications in medicine, chemical production, and bioenergy.  Dr. Romero has received the Damon Runyon-Rachleff Innovation Award (2016), the NIH Outstanding Investigator Award (2016), the Shaw Scientist Award (2018), and the WARF Innovation Award (2019).

  • Aditya Kunjapur

    Dr. Aditya Kunjapur began as an Assistant Professor in Chemical and Biomolecular Engineering at the University of Delaware in December 2018. His lab focuses on expanding the repertoire of microbial chemistry with an emphasis on enabling new chemical functional groups in living contexts. Dr. Kunjapur received his doctoral degree from MIT in 2015, where he trained under Dr. Kristala Prather and enabled aldehyde biosynthesis in E. coli. Afterwards, he performed postdoctoral research under the supervision of Dr. George Church at Harvard Medical School, where he designed platforms to improve the fidelity of non-standard amino acid incorporation into proteins. Dr. Kunjapur was previously Co-Chair of the Synberc Student and Postdoc Association, the precursor to the EBRC. In 2019, Dr. Kunjapur was awarded an Emerging Leaders in Biosecurity Initiative Fellowship.

  • Chris Dupont

    Dr. Chris Dupont is an Associate Professor in the Departments of Environment and Sustainability, Human Health, and Synthetic Biology at JCVI. His primary research focus is on the genomics, physiology, and evolution of microbiomes, both environmental and organismal. This involves synthetic biology enabled work with model organisms or ecosystems as well as sequencing enabled analyses of host-microbe interactions.

    Prior to joining JCVI, Chris received his Ph.D. in Oceanography and Marine Biology from the Scripps Institution of Oceanography, as well as a Bachelor’s in Natural Resources and a Master’s of Biological and Environmental Engineering from Cornell University.

  • Nikhil Nair

    After receiving his B.S. in Chemical and Biomolecular Engineering from Cornell University in 2003, Nikhil Nair worked at Bristol-Myers Squibb as a manufacturing research scientist in biotechnology purification development. He then went on to receive his M.S. and Ph.D. in Chemical and Biomolecular Engineering from the University of Illinois—Urbana-Champaign in 2006 and 2010, respectively. As a graduate student, he developed processes for the production of the sugar substitute xylitol using E. coli and the biofuel butanol using yeast, via a combination of protein and genome engineering approaches. He joined Tufts after completing a postdoctoral fellowship in microbiology and immunobiology at the Harvard Medical School under the guidance of Professor Ann Hochschild.

  • Alanna Schepartz

    Professor Schepartz’s research group is interested in questions that span the chemistry-biology continuum. We seek to establish new knowledge about the chemistry of complex cellular processes and apply this knowledge to design or discover molecules–both small and large–with unique or useful properties. We apply the tools of organic synthesis, biochemistry, biophysics, and structural, molecular, and synthetic biology in our work. Current projects focus on (1) repurposing the ribosome to biosynthesize sequence-defined chemical polymers and polyketides; (2) exploring and improving novel tools for trafficking proteins to the cytosol and nucleus for therapeutic applications; (3) understanding the mechanism by which chemical information is transported through cellular membranes; and (4) developing new probes and fluorophores to image organelle dynamics at super-resolution for highly extended times and in multiple colors

  • Mark Blenner

    My research group addresses big problems in sustainability, human health, national defense, and space exploration – using synthetic biology, metabolic engineering, genomics & systems biology, and protein engineering. We are most interested in derisking and speeding up cell line development. We work mostly in eukaryotic systems (non-model yeast and mammalian cells) as well as bacteria.

  • Jeffrey Gralnick

    Jeffrey Gralnick is a bacterial physiologist and geneticist who earned his PhD in Bacteriology with Diana Downs at University of Wisconsin – Madison. He began working with the environmental bacterium Shewanella oneidensis as a postdoc at Caltech with Dianne Newman. In 2005 he started his lab at the University of Minnesota BioTechnology Institute focusing on extracellular electron transfer in environmental bacteria that make a living by transforming redox reactive metals. His lab uses synthetic biology to both engineer and understand these usual microbes.

  • Mark Mimee

    Mark Mimee is an Assistant Professor in the Department of Microbiology and the Pritzker School of Molecular Engineering. His interest in microbial life began in Montreal, Canada, where he completed his Bachelor of Science in Microbiology & Immunology at McGill University. Inspired by the nascent field of synthetic biology, Mark pursued studies at the Massachusetts Institute of Technology, completing his PhD in Microbiology with Dr. Timothy Lu as an HHMI International Student Fellow and a Qualcomm Innovation Fellow. His research focuses on developing strategies to precisely engineer the activity and composition of the microbiota. His long-term vision is to implement these technologies to chart new basic and translational studies to exploit the microbiota for human health.

  • Sam Weiss Evans

    Sam’s work focuses on the governance of security concerns in emerging research technology, especially biology. He studies and actively engages with a range of communities building new approaches to the identification and governance of security concerns, including US and British governments, the international Genetically Engineered Machines Competition, DARPA, and the United Nations Institute on Disarmament Research.

  • Blake Simmons

    Dr. Simmons is the Director of the Biological Systems and Engineering Division at Lawrence Berkeley National Laboratory (biosciences.lbl.gov). He also serves as the Chief Science and Technology Officer and Vice-President of the Deconstruction Division at the Joint BioEnergy Institute (www.jbei.org), a DOE Office of Science funded project tasked with the development and realization of next-generation “drop-in” biofuels and bioproducts produced from sustainable, non-food lignocellulosic biomass. He is also the Project Management Lead for the DOE Agile BioFoundry (https://agilebiofoundry.org/).

  • Ian Wheeldon

    Dr. Wheeldon is an Associate Professor of Chemical and Environmental Engineering at the University of California, Riverside (UCR). He is also the director of UCR’s Center for Industrial Biotechnology. Dr. Wheeldon received his PhD in Chemical Engineering from Columbia University in 2009 and completed two years of postdoctoral training at Harvard Medical School and the Wyss Institute for Biologically Inspired Engineering at Harvard University. He received a Master’s of Applied Science from the Royal Military College of Canada, and a Bachelor’s of Applied Science from Queen’s University, Canada. Dr. Wheeldon’s laboratory focuses on synthetic biology for chemical synthesis.

  • Tara Deans

    Dr. Tara Deans received her PhD from Boston University in Biomedical Engineering. Following her postdoctoral training at Johns Hopkins University, she became an Assistant Professor in the Biomedical Engineering Department at the University of Utah. Currently, Dr. Deans runs an applied mammalian synthetic biology laboratory where her lab focuses on building novel genetic tools to study the mechanisms of stem cell differentiation for the purpose of directing their cell fate decisions. Recently, Dr. Deans received three prestigious awards to support this area of research: the NSF CAREER Award, the Office of Naval Research (ONR) Young Investigator Award, and the NIH Trailblazer Award. In addition to her research, Dr. Deans was recently named a STEM Ambassador in the STEM Ambassador Program (STEMAP) at the University of Utah to engage underrepresented groups in STEM fields.

  • Elizabeth Pitts

    Elizabeth A. Pitts is an assistant professor in the University of Pittsburgh’s Composition, Literacy, Pedagogy, and Rhetoric program. She received her PhD in Communication, Rhetoric, and Digital Media from North Carolina State University with a minor in Genetic Engineering and Society, and she also holds a BA and MA in English from Georgetown University.

    Elizabeth’s research blends rhetorical theory, organizational studies, and science studies to examine how technologies influence the nature of professional work and professional identity. Her current book project offers insights into a movement to make the coding of DNA as pervasive as the coding of software. By drawing parallels between the composition of genetically engineered organisms and the composition of persuasive speech and writing, the book facilitates humanistic inquiry into the material practices undertaken in laboratories.

    Elizabeth enjoys interdisciplinary collaboration and has co-authored with geneticists, ecologists, and policy scholars. Her work is informed by her decade of experience as a professional writer and speechwriter at the White House, the US Department of Education, and the Pew Charitable Trusts.

  • David Nielsen

    My research has been in the area of biotechnology for 18 years, the last 13 of which has been focussed on metabolic engineering as well as synthetic biology. We are interested in developing novel pathways and strains for the bioproduction of value added chemicals, as well as new tools for improving such efforts. Current projects are focussed on engineering new pathways for non-natural aromatic chemicals, application of rational engineering and adaptive laboratory evolution to improve strain tolerance, engineering cyanobacteria for the photosynthetic production of biofuels and biochemicals, development of tools for genetic engineering in cyanobacteria (e.g., new plasmids and promoter systems, CRIPSR-based gene editing tools, markerless recombineering methods, etc.), and the engineering of and investigation of synthetic microbial communities.

  • James Chappell

    Our lab focuses on understanding how the biomolecule RNA can be designed to create synthetic regulators of gene expression—allowing for the manipulation of natural cellular processes to elicit deeper biological understanding and for the engineering of new synthetic cellular functions. As such our lab focuses both on the creation of new gene regulatory tools and their application.

  • Robert Egbert

    Dr. Robert Egbert (Rob) is a staff scientist in the Biological Sciences Division at Pacific Northwest National Laboratory (PNNL). Dr. Egbert is an expert in bacterial genetic circuit design and genome engineering. He received dual-BS degrees in electrical engineering and Korean at Brigham Young University, a PhD in electrical engineering from the University of Washington working with Eric Klavins, and a joint appointment as a postdoctoral researcher at the University of California Berkeley and Lawrence Berkeley National Laboratory with Adam Arkin. He currently leads a DOE program in Secure Biosystems Design on novel genome remodeling approaches to control the persistence of engineered functions in the environment, is Integration Lead for a PNNL-led team for the DARPA Friend or Foe program, and is Co-PI for data-driven synthetic biology within the DARPA Synergistic Discovery and Design program. Dr. Egbert is also the Science Lead for an PNNL internal investment in synthetic biology and biosecurity. Outside of work, Rob loves adventures with his wife and three children: swimming, kayaking, and river rafting in lakes and rivers of the mountain West; backpacking in the Pacific Northwest, Utah red rocks, and Canadian Rocky Mountains; and pinball. Rob also enjoys playing competitive ultimate frisbee.

  • Marcella Gomez

    Marcella M. Gomez is an assistant professor at UC Santa Cruz in the department of Applied Mathematics. She received her PhD from Caltech in 2015 and a B.S. from UC Berkeley in 2009; both degrees in Mechanical Engineering. Her research interests include a dynamical systems and control theoretic approach to synthetic and systems biology.

  • Alessandra Eustáquio

    Alessandra has been an Assistant Professor in the Department of Medicinal Chemistry and Pharmacognosy of the University of Illinois at Chicago since August 2015. She also holds an appointment with the Center for Biomolecular Sciences. The Eustaquio laboratory aims to contribute to drug discovery and development from natural products. The Eustaquio lab uses open-source bioinformatics tools to predict the biosynthetic potential of bacteria based on their genome sequences. We then carry out genetic engineering to activate expression of silent genes and obtain the encoded natural products. We are also interested in developing synthetic biology tools to facilitate access to natural and engineered compounds. Before joining the faculty of the University of Illinois at Chicago, Alessandra was a Principal Scientist at Pfizer, Medicinal Chemistry, Natural Products group. Prior to that, she had done postdoctoral training at the University of California San Diego, obtained a PhD in Pharmaceutical Biology from the University of Tuebingen, Germany, and a B.Sc. in Pharmacy & Biochemistry from the University of São Paulo, Brazil.

  • Back to top ⇑