Individual Members

  • Tae Seok Moon

    He has 24 years of research experience in chemistry, systems biology, and synthetic biology, including 5.5 years of industry experience (as of 2021). His research focus (2012-21; 15 grants; $7.3M external funding to him; $16M to the entire team) is understanding gene regulation, evolution, and metabolism, building sensors and genetic circuits, and engineering microbes to solve global problems, including climate crisis, waste valorization, plastic upcycling, sustainability, and health issues. He has published 52 papers, has filed 9 patents, and has given 51 invited and 118 contributed presentations. He has advised 26 PhD/Postdoctoral and 28 undergrad researchers. He is a Founder and Head of the SAB of Moonshot Bio. Several awards include a B&B Wang Award, an NSF CAREER award, an ONR YIP, a Sluder Fellowship (MIT), and the SNU President Prize. He is the Founding Chair of SynBYSS (Synthetic Biology Young Speaker Series) with more than 1000 global audiences.

    Twitter handle: @Moon_Synth_Bio

    LinkedIn Profile

  • June Medford

  • Timothy Lu

  • Chang Liu

    Professor Liu’s research is in the fields of synthetic biology, chemical biology, and directed evolution. He is particularly interested in engineering specialized genetic systems for rapid mutation and evolution in vivo to address problems ranging from protein engineering to developmental biology. For his group’s work, Professor Liu has been recognized with a number of awards including the NIH Transformative Research Award, the NIH New Innovator Award, the Moore Inventor Fellowship, the Sloan Research Fellowship, the Beckman Young Investigator Award, the Dupont Young Professor Award, and the ACS Synthetic Biology Young Innovator Award.

  • Wendell Lim

  • Jan Leach

    Jan Leach

  • Tanja Kortemme

  • Ahmad Khalil

    Ahmad (Mo) Khalil is Associate Professor of Biomedical Engineering and the Founding Associate Director of the Biological Design Center at Boston University. He is also a Visiting Scholar at the Wyss Institute for Biologically Inspired Engineering at Harvard University. His research is interested in how molecular circuits enable core cellular functions, such as decision-making, computation, and epigenetic memory. His team applies synthetic biology approaches to interrogate the function and evolution of these cellular systems. He is recipient of numerous awards, including the Presidential Early Career Award for Scientists and Engineers (PECASE), NIH New Innovator Award, NSF CAREER Award, DARPA Young Faculty Award, and the Hartwell Foundation Biomedical Research Award, and he has received numerous awards for teaching excellence at both the Department and College levels. Mo was an HHMI Postdoctoral Fellow with Dr. James Collins at Boston University. He obtained his Ph.D. from MIT and his B.S. (Phi Beta Kappa) from Stanford University

  • Richard Kitney

    Richard Kitney

  • Jay Keasling

  • Terry Johnson

  • Michael Jewett

    Michael Jewett is a Professor of Bioengineering at Stanford University. He received his B.S. from UCLA and PhD from Stanford University, both in Chemical Engineering. He completed postdoctoral studies at the Center for Microbial Biotechnology in Denmark and the Harvard Medical School. Jewett was also a guest professor at the Swiss Federal Institute of Technology (ETH Zurich). His research group focuses on advancing synthetic biology research to support planet and societal health, with applications in medicine, manufacturing, sustainability, and education.

  • Nathan Hillson

    Nathan Hillson

    Dr. Hillson earned his Ph.D. in Biophysics from Harvard Medical School. He did his postdoctoral work in Developmental (Micro)Biology at Stanford University School of Medicine. Dr. Hillson's work has spanned the realms of the private (notably as co-founder/Chief Scientific Officer at TeselaGen) and public biotechnology sectors. As Department Head of BioDesign within the Biological Systems & Engineering Division, Dr. Hillson leads scientists and engineers within Lawrence Berkeley National Laboratory whose domain expertise spans synthetic biology, metabolic engineering, microbiology, microbial communities, software engineering, and laboratory automation engineering. As overall Principal Investigator of the U.S. DOE Agile Biofoundry, Dr. Hillson leads scientists/engineers across 8 U.S. DOE National Labs towards the development of a public infrastructure that enables the private sector to reduce the cost and accelerate bioprocess commercialization timelines. This infrastructure complements discovery engines (such as the Joint Genome Institute, to which Dr. Hillson also contributes).

  • Karmella Haynes

    Karmella Haynes

  • John Glass

    John Glass

    Dr. John Glass is a Professor and leader of the J. Craig Venter Institute (JCVI) Synthetic Biology and Bioenergy Group. His expertise is in molecular biology, microbial pathogenesis, RNA virology, and microbial genomics. Glass is part of the Venter Institute team that created the first bacterial cell with a chemically synthesized genome and a bacterial cell with a synthetic genome encoding only the essential gene set needed for life. In reaching this milestone the Venter Institute scientists developed the fundamental techniques of the new field of synthetic genomics including genome transplantation and genome assembly. Glass was also leader of the JCVI project that rapidly made synthetic influenza virus vaccine strains in collaboration with Novartis Vaccines and Diagnostics, Inc. and Synthetic Genomics, Inc. At the JCVI he has also led the bacterial outer membrane vesicle based vaccine, genome transplantation, and Mycoplasma genitalium minimal genome projects, and projects studying other mycoplasma and ureaplasma species. Glass and his Venter Institute colleagues are now using synthetic biology and synthetic genomics approaches developed at the JCVI to create cells and organelles with redesigned genomes to make microbes that can produce biofuels, pharmaceuticals, and industrially valuable molecules. Glass is an adjunct faculty member of the University of Maryland at College Park Cellular and Molecular Biology Program, one of the founding members of the Build-A-Cell program to create synthetic cells, and member of the Global Viral Network Scientific Leadership Board.

    Prior to joining the JCVI, Glass spent five years in the Infectious Diseases Research Division of the pharmaceutical company Eli Lilly. There he was a member of the hepatitis C virology group and a microbial genomics group (1998-2003). There Glass was part of the Lilly and Vertex Pharmaceuticals Inc. team that developed Incivek, one of the first drugs to cure hepatitis C virus.
    Glass earned his undergraduate (Biology) and graduate degrees (Genetics) from the University of North Carolina at Chapel Hill. His Ph.D. work was on RNA virus genetics in the laboratory of Gail Wertz. He was on the faculty and did postdoctoral fellowships in the Microbiology Department of the University of Alabama at Birmingham in polio virology with Casey Morrow and mycoplasma pathogenesis with Gail Cassell (1990-1998). On sabbatical leave in Ellson Chen’s lab at Applied Biosystems, Inc. (1995-1997) he sequenced the genome of Ureaplasma parvum and began his study of bacterial genomics.

  • Emma Frow

    Emma’s research and teaching activities focus on the governance of emerging biotechnologies, especially synthetic biology and biological engineering. She started her research life as a bioscientist, completing a PhD in biochemistry at the University of Cambridge, and then re-trained in the field of science & technology studies (STS) at the University of Edinburgh and Harvard’s Kennedy School of Government. Her current faculty position at Arizona State University is a joint appointment between the School for the Future of Innovation in Society and the School of Biological & Health Systems Engineering, which allows her to straddle the worlds of science policy and bioengineering. Emma has been studying the field of synthetic biology for a decade now, working on a variety of social scientific and interdisciplinary projects in Europe and the US. She has specific research interests in the relationship between engineering and biology, and in the standards and infrastructures (physical, digital, social) being designed to support the development of this field. She sees standards and infrastructures as tools of governance, and is interested in identifying the values, design choices and visions of the future that get built into new infrastructures for biotechnology.

  • Andrew Ellington

    The Ellington lab works on using synthetic biology to augment organismal chemistry, generating expanded genetic alphabets and genetic codes. In addition, we attempt to developing orthogonal control systems for a variety of organisms that allow us to readily lay in new instruction sets that can operate on top of normal metabolism. Between these innovations, it has proven possible to develop and produce novel biomaterials, with the ultimate goal of being able to direct the evolution of materials properties.

  • Mary Dunlop

    Mary Dunlop is an Associate Professor of Biomedical Engineering at Boston University with additional appointments in Molecular Biology, Cell Biology & Biochemistry and Bioinformatics. She graduated from Princeton University with a B.S.E. in Mechanical and Aerospace Engineering and a minor in Computer Science. She then received her Ph.D. from the California Institute of Technology, where she studied synthetic biology with a focus on dynamics and feedback in gene regulation. As a postdoctoral scholar, she conducted research on biofuel production at the Department of Energy’s Joint BioEnergy Institute. Her lab engineers novel synthetic feedback control systems and also studies naturally occurring examples of feedback in gene regulation. In recognition of her outstanding research and service contributions, she has received many honors including a Department of Energy Early Career Award, a National Science Foundation CAREER Award, and the ACS Synthetic Biology Young Investigator Award.

  • Maitreya Dunham

    The Dunham lab uses synthetic biology, evolution, and genomics to understand how genome variation works in yeast and humans. In service of this goal, we also build tools, both physical devices for continuous culture and DNA gadgets for yeast genetics.

  • Back to top ⇑