Member Directory

  • Arum Han

    Dr. Arum Han is a Professor in the Department of Electrical and Computer Engineering and also in the Department of Biomedical Engineering (courtesy joint appointment) at Texas A&M University (USA). He joined Texas A&M University in 2005 as an Assistant Professor. He is also a faculty of the Texas A&M Health Science Center and the Texas A&M Institute for Neuroscience. He received his Ph.D from the Georgia Institute of Technology in 2005, his M.S. from the University of Cincinnati in 2000, and his B.S. from the Seoul National University in 1997, all in electrical engineering.

    His research interests are in solving grand challenge problems in the broad areas of health and energy through the use of micro/nano systems technologies. His work in these areas has focused on the development of high-throughput lab-on-a-chip systems for single-cell-resolution assays, synthetic biology and biotechnology applications, as well as development of organ-on-a-chip systems through

    He has co-authored more than 80 peer-reviewed publications and has received funding from the Bill and Melinda Gates Foundation, NIH, NSF, DARPA, DTRA, USDA, U.S. Army Corp of Engineers, Qatar National Research Foundation (QNRF), and several other international sponsors and private companies. He currently serves as the editorial board member of the journal PLoS ONE, Algal Research, and Biotechnology and Bioprocess Engineering, as well as associate editor for the journal Biomedical Microdevices.

    He is a Texas A&M Engineering Experiment Station (TEES) Fellow (2012), Eugene Webb Faculty Fellow of Texas A&M University (2014), recipient of the Engineering Genesis Award for Multidisciplinary Research from Texas A&M University (2014), recipient of the E. D. Brockett Professorship Award (2015), recipient of the Dean of Engineering Excellence Award (2016), and became the Presidential Impact Fellow of the Texas A&M University in 2017.

  • Christopher Mason

    Dr. Christopher Mason is an Associate Professor of Genomics, Physiology, and Biophysics at Weill Cornell Medicine and the Director of the WorldQuant Initiative for Quantitative Prediction. He also holds affiliate appointments at the Tri-I Program on Computational Biology and Medicine (Cornell, Memorial Sloan Kettering Cancer Center and Rockefeller University), Harvard Medical School, and Yale Law School.
    The Mason laboratory develops and deploys new biochemical and computational methods in functional genomics to elucidate the genetic basis of human disease and physiology. We create and deploy novel techniques in next-generation sequencing and algorithms for: tumor evolution, genome evolution, DNA and RNA modifications, and genome/epigenome engineering. We also work closely with NIST/FDA to build international standards for these methods (SEQC2, IMMSA, and Epigenomics QC groups), to ensure clinical-quality genome measurements and editing. We also work with NASA to build integrated molecular portraits of genomes, epigenomes, transcriptomes, and metagenomes for astronauts, which help establish the molecular foundations and genetic defenses for enabling long-term human spaceflight.
    Dr. Mason has won the NIH’s Transformative R01 Award, the NASA Group Achievement Award, the Pershing Square Sohn Cancer Research Alliance Young Investigator award, the Hirschl-Weill-Caulier Career Scientist Award, the Vallee Scholar Award, the CDC Honor Award for Standardization of Clinical Testing, and the WorldQuant Foundation Scholar Award. He was named as one of the “Brilliant Ten” Scientists by Popular Science, featured as a TEDMED speaker, and called “The Genius of Genetics” by 92Y. He has >230 peer-reviewed papers and scholarly works that have been featured on the covers of Nature, Science, Cell, Nature Biotechnology, Nature Microbiology, and Neuron, as well as legal briefs cited by the U.S. District Court and U.S. Supreme Court.

  • Cinnamon Bloss

    Cinnamon Bloss, Ph.D. is Associate Professor in the Herbert Wertheim School of Public Health and Longevity Science and Director of the Center for Empathy and Technology at the University of California San Diego. Dr. Bloss is jointly appointed in the Department of Psychiatry and the Division of Biomedical Informatics in the School of Medicine. Dr. Bloss researches social and behavioral phenomena related to emerging technologies, with a particular focus on genetic and genomic research, precision health, and big data. Her research is funded by the National Institutes of Health, the Defense Advanced Research Projects Agency, and philanthropic donations. Dr. Bloss serves as a member of the Novel and Exceptional Technology and Research Advisory Committee, a federal advisory committee that provides recommendations to the NIH Director and a public forum for the discussion of the scientific, safety, and ethical issues associated with emerging biotechnologies. Dr. Bloss has given invited talks at the National Academy of Sciences, Engineering, and Medicine, the National Press Club, the National Institutes of Health, and has presented invited testimony before a Food and Drug Administration Advisory Panel to inform consumer genomics policy. Dr. Bloss was recognized by the Western Societies of Medicine with the Carmel Prize for Research Excellence and has received numerous teaching awards at the University of California San Diego.

  • Jenny Mortimer

    Dr. Jenny Mortimer is a Staff Scientist at Lawrence Berkeley National Laboratory (LBNL) in California. After completing graduate work at Cambridge University, UK on signal transduction in roots, she began studying the plant cell wall as a postdoc with Prof. Paul Dupree and the BBSRC Bioenergy Centre (BSBEC), also at Cambridge. This was followed by a fellowship at RIKEN Yokohama, Japan, hosted by Prof. Taku Demura.

    At LBNL, she leads the Plant Systems Biology Group and is Deputy Vice President of the Feedstocks Division at the Department of Energy (DoE)-funded Joint BioEnergy Institute (JBEI; jbei.org). Her group (mortimerlab.org) seeks to understand how plants use the products of photosynthesis – simple sugars – to build complex biological molecules. This knowledge is being used to produce renewable, sustainable, fuels and biochemicals from plant biomass. Her lab is also developing new synthetic biology and bioinformatics tools for bioenergy crops (such as new transformation tools for sorghum as part of the DoE Plant Genomics program), and investigating the role of plant cell walls in recruiting and retaining the rhizosphere microbiome, for example as part of the DoE mCAFEs project (https://mcafes.lbl.gov/).

    Dr. Mortimer is also co-leading the LBNL EcoPOD team, which is developing highly-instrumented mesocosms to bridge the scale and complexity gap between laboratory and field plant-microbe-soil research. The EcoPOD project will help researchers to test and model engineered organisms in a secure environment.

  • Cong Trinh

    Dr. Cong T. Trinh is an Associate Professor in the Department of Chemical and Biomolecular Engineering at The University of Tennessee, Knoxville. Dr. Trinh earned his B.S in Chemical Engineering (summa cum laude, honors thesis) with minors in Chemistry and Mathematics from The University of Houston and his PhD in Chemical Engineering from The University of Minnesota-Twin Cities. He then worked as a post-doc scholar at The University of California, Berkeley.

  • Jennifer Brophy

    Jenn Brophy is an Assistant Professor of Bioengineering at Stanford University. Her lab focuses on engineering plant development to control the size and shape of plant organs and tissues. Jenn received her BS in bioengineering from UC Berkeley and PhD from MIT, where she worked with Professors Christopher Voigt and Alan Grossman to develop a tool for engineering undomesticated bacteria and modifying microbiomes in situ. For her postdoctoral research, she worked with Professor Jose Dinneny at Stanford to engineer spatial patterns of gene expression across plant roots using synthetic genetic circuits. Jenn was previously Co-Chair of the Synberc Student and Postdoc Association, the precursor to the EBRC and was recently awarded a Chan Zuckerburg Biohub Investigatorship.

  • Anna Osterlind Jones

    Anna Osterlind Jones is Head of Government Affairs at Zymergen, where she leads the company’s engagement with the Administration and Congress. She rejoined the company in 2021, having previously worked at Zymergen from 2015 to 2018 as the then-startup grew from 40 to nearly 500 employees. Prior to her current position, Anna was with the United States Department of Agriculture, most recently as Chief of Staff to the Under Secretary for Trade and Foreign Agricultural Affairs. At USDA, she also served as Chief of Staff to the Administrator of the Agricultural Marketing Service, where she helped launch the domestic hemp industry among other initiatives, and in USDA’s Office of Congressional Relations.

    Anna started her career on Capitol Hill working for a Senator from her home state of Missouri. She holds a B.A. in Economics from the University of Missouri.

  • Umakant Mishra

  • Sharon Steele

    Sharon joined Zymergen in March 2021. She currently works remotely from Virginia. Sharon has worked as a Government Engagement/Contracting senior legal advisor for over 15 years, with various large government contractors. During the last several years Sharon has maintained a legal practice servicing large and small government contractors. Sharon enjoys yoga, bike riding and spending time with her family which includes two kitties.

  • Xiaojun Tian

    Dr. Xiaojun Tian is an Assistant Professor in the School of Biological and Health Systems Engineering at Arizona State University.

  • Theodore Anton

    I am a popular science and nonfiction author. My most recent book was Planet of Microbes (University of Chicago Press, 2017). I’m writing a book called Programmable Planet: The Synthetic Biology Revolution to be published by Columbia University Press in fall, 2022.

  • Niall Mangan

    Niall M. Mangan received the Dual BS degrees in mathematics and physics, with a minor in chemistry, from Clarkson University, Potsdam, NY, USA, in 2008, and the PhD degree in systems biology from Harvard University, Cambridge, MA, USA, in 2013. Dr. Mangan worked as a postdoctoral associate in the Photovoltaics Lab at MIT from 2013-2015 and as an Acting Assistant Professor at the University of Washington, Seattle from 2016-2017. She is currently an Assistant Professor of engineering sciences and applied mathematics with Northwestern University, where she works at the interface of mechanistic modeling, machine learning, and statistical inference. Her group applies these methods to many applications including metabolic and regulatory networks to accelerate the build-test-learn cycle.

  • Omar Akbari

    In May of 2005, Omar Akbari received a B.S./M.S. in Biotechnology from the University of Nevada, Reno. In December of 2008, he received a Ph.D. in Cell and Molecular Biology from the University of Nevada, Reno where he studied transcriptional regulation during development. He then joined the laboratory of professor Bruce A. Hay at the California Institute of Technology as a Postdoctoral Scholar to develop population control technologies for animals. In 2015, he became an Assistant Professor of Entomology in the Center for Infectious Disease Vector Research (CIDVR) at the University of California, Riverside. In fall of 2017, he joined the faculty as an Assistant Professor in the Cell and Developmental Biology Section, within the Division of Biological Sciences, at the University of California, San Diego. In 2018 he co-founded Agragene a biotechnology based startup in San Diego, CA. In 2019 he was promoted to Associate Professor (w/Tenure) in the Cell and Developmental Biology Section, within the Division of Biological Sciences at the University of California, San Diego.

  • Yasuo Yoshikuni

    Dr. Yasuo Yoshikuni is a staff scientist at Lawrence Berkeley National Lab. He leads the DNA synthesis science user program at the DOE Joint Genome Institute (JGI). His program has already supported more than 200 user projects globally, and several major publications were published through the program. Dr. Yoshikuni’s personal research focus is to study and understand microbe- and plant-microbe communications for sustainable agriculture, developing non-model yeast for fuel and chemical production, and biomaterials synthesis using systems and synthetic biology. Before joining the DOE JGI, Dr. Yoshikuni was co-founder and chief science officer at a clean technology start-up, Bio Architecture Lab, Inc. (BAL), where his significant achievement was using systems and synthetic biology to discover novel pathways assimilating unique sugar polymers in macroalgae and to develop the first microbial platform technologies unlocking the potential of macroalgae as an environmentally sustainable and cost-effective biomass for production of renewable fuels and chemicals. The development of this technology allowed the company to build a strong IP propositions and to raise ~$40 million from private funding sources, receive prestigious national grants, and build a commercial partnership with leading companies in the oil and chemical industries. The work also led to several patents and high-impact scientific publications.

  • Todd Treangen

    I am an Assistant Professor in the Computer Science Department at Rice University in Houston, TX. My research group focuses on bioinformatics, specializing in metagenomics, biosecurity, and microbial forensics. In addition, I have prioritized developing open-source bioinformatics software and analysis pipelines designed to facilitate exploratory and hypothesis-driven biological research, aimed at the intersection of microbial ecology, comparative genomics, and computer science. https://www.gitlab.com/treangenlab

  • Sifang Chen

    Sifang is interested in applications of engineering biology toward sustainability and has just recently made the transition from the lab to science policy. Prior to joining EBRC, she worked on DNA computing and DNA data storage as a postdoctoral researcher at the University of Washington. Previously, she was an intern and visiting researcher at Microsoft Research, where she built chemical-based wearables and low-cost pollution sensors. Sifang received her Ph.D. in Physics from the University of Washington in 2019 researching DNA-based programmable materials. She is thrilled to have the opportunity to learn about science policy and work with a wide-ranging group of experts and stakeholders. She will be primarily working in the Roadmapping focus area and looking at how biotechnology could contribute to creating equitable climate solutions.

  • India Hook-Barnard

    India Hook-Barnard is Executive Director of the Engineering Biology Research Consortium (EBRC). Her primary interests are in the areas of synthetic biology, precision medicine, responsible innovation, and biosecurity. India enjoys building multidisciplinary collaborations and developing a vision and strategy to address complex challenges. She works with experts and leaders from across academia, industry, and government sectors to identify and shape scientific opportunities, technical feasibility, and policy issues. Her goal is to advance and accelerate engineering biology solutions across all application areas, drive innovation, and grow the bioeconomy for all. 

    Prior to joining EBRC, India was Senior Advisor to the Beyond 2020: A Vision and Pathway for NIH Working Group, and Senior Vice President for Patient Outcomes and Experience at the National Marrow Donor Program. She was the Director of Research Strategy and Associate Director, Precision Medicine at the University of California, San Francisco; she helped launch and was the Executive Director for the California Initiative to Advance Precision Medicine. Earlier in her career, India worked at the National Academies of Sciences, Engineering, and Medicine (NASEM), focusing on areas of emerging science and technology, including policy issues of data governance, regulation, bioethics, biodefense, and workforce development. At NASEM, she directed standing committees, workshops, and six consensus reports, including Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease (2011).

    As a postdoctoral research fellow at the National Institutes of Health, India studied the regulation of gene expression in bacteria and phage. She earned her PhD in Microbiology-Medicine from the Department of Molecular Microbiology and Immunology at the University of Missouri.

  • John Dileo

    John Dileo manages the Biotechnology and Life Sciences Department at the MITRE Corporation in McLean, Virginia. He holds a Ph.D. in Molecular Genetics & Biochemistry from the University of Pittsburgh and has specialized in experimental and theoretical research in molecular, systems, and synthetic biology, while also providing support and oversight to numerous large Government research and development programs in those fields of study. At MITRE, his department has groups that focus on biosafety, security and quality; countering weapons of mass destruction; medical countermeasures development; and human performance optimization.

  • Aindrila Mukhopadhyay

    Dr. Mukhopadhyay is a Senior Scientist in the Biological Systems and Engineering Division at the Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. She received a master’s in chemistry from the Indian Institute of Technology in, Mumbai, India in 1996 and a PhD in Organic Chemistry from the University of Chicago, Chicago, IL in 2002. She did her postdoctoral research at UC Berkeley and LBNL. Currently, she is the principal investigator of her team that is part of several large interdisciplinary projects, mainly focused on engineered and environmental microbial systems. She is the Vice President of the Biofuels and Bioproducts Division at the Department of Energy funded, Joint BioEnergy Institute (JBEI) and is also the Director of its Host Engineering group. As part of JBEI her group develops tools to examine and engineer a variety of microbial platforms including Pseudomonas putida, Corynebacterium glutamicum, Escherichia coli, Rhodosporidium toruloides, Saccharomyces cerevisiae, and other microbial strains. She uses a range of functional genomics, metabolic modeling, and systems biology approaches. Her group specifically focuses on developing robust strains that show high tolerance and productivity during biofuel and chemical production, and the optimization required to achieve scalability.

  • Back to top ⇑