Member Directory

  • Philip Romero

    Philip Romero is an Assistant Professor in Biochemistry and Chemical & Biological Engineering at UW-Madison.  He received his PhD in Biochemistry from Caltech and conducted postdoctoral research at UCSF.  The Romero laboratory applies tools from statistics and machine learning to design proteins for broad applications in medicine, chemical production, and bioenergy.  Dr. Romero has received the Damon Runyon-Rachleff Innovation Award (2016), the NIH Outstanding Investigator Award (2016), the Shaw Scientist Award (2018), and the WARF Innovation Award (2019).

  • Michael Koepke

    Michael is a pioneer in genetic engineering and strain development of gas fermenting organisms to convert carbon monoxide and carbon dioxide to useful products. His research on Clostridium ljungdahlii demonstrated for the first time that gas fermenting acetogens can be genetically modified and provided a first genome and genetic blueprint of such an organism.

    Since 2009, Michael is Director of Synthetic Biology at LanzaTech, a company that has developed a proprietary gas fermentation process that is revolutionizing the way the world thinks about waste carbon by treating it as an opportunity instead of a liability. Michael and his team are responsible for development of genetic tools and synthetic pathways as well as strain engineering of LanzaTech’s proprietary gas fermenting organisms to optimize performance of the process and expand the product portfolio. Michael leads several of LanzaTech R&D collaborations with both industrial and academic partners.

    Michael has over 15 years of experience working with clostridia and gas fermenting organisms and holds a Ph.D. in Microbiology and Biotechnology from University of Ulm, Germany. Michael authored over 100 patents and over 30 peer reviewed articles and book chapters. Michael also contributed as scientific advisor to the Joint Genome Institute (JGI) and co-organizer of international conferences as the 2018 Foundations of Systems Biology (FOSBE) and Biochemical and Molecular Engineering XXII and has been awarded the 2015 Presidential Green Chemistry Challenge award for Greener Synthetic Pathways by the US Environmental Protection Agency (EPA) and American Chemical Society (ACS).

  • Aditya Kunjapur

    Dr. Aditya Kunjapur began as an Assistant Professor in Chemical and Biomolecular Engineering at the University of Delaware in December 2018. His lab focuses on expanding the repertoire of microbial chemistry with an emphasis on enabling new chemical functional groups in living contexts. Dr. Kunjapur received his doctoral degree from MIT in 2015, where he trained under Dr. Kristala Prather and enabled aldehyde biosynthesis in E. coli. Afterwards, he performed postdoctoral research under the supervision of Dr. George Church at Harvard Medical School, where he designed platforms to improve the fidelity of non-standard amino acid incorporation into proteins. Dr. Kunjapur was previously Co-Chair of the Synberc Student and Postdoc Association, the precursor to the EBRC. In 2019, Dr. Kunjapur was awarded an Emerging Leaders in Biosecurity Initiative Fellowship.

  • Chris Dupont

    Dr. Chris Dupont is an Associate Professor in the Departments of Environment and Sustainability, Human Health, and Synthetic Biology at JCVI. His primary research focus is on the genomics, physiology, and evolution of microbiomes, both environmental and organismal. This involves synthetic biology enabled work with model organisms or ecosystems as well as sequencing enabled analyses of host-microbe interactions.

    Prior to joining JCVI, Chris received his Ph.D. in Oceanography and Marine Biology from the Scripps Institution of Oceanography, as well as a Bachelor’s in Natural Resources and a Master’s of Biological and Environmental Engineering from Cornell University.

  • Nikhil Nair

    After receiving his B.S. in Chemical and Biomolecular Engineering from Cornell University in 2003, Nikhil Nair worked at Bristol-Myers Squibb as a manufacturing research scientist in biotechnology purification development. He then went on to receive his M.S. and Ph.D. in Chemical and Biomolecular Engineering from the University of Illinois—Urbana-Champaign in 2006 and 2010, respectively. As a graduate student, he developed processes for the production of the sugar substitute xylitol using E. coli and the biofuel butanol using yeast, via a combination of protein and genome engineering approaches. He joined Tufts after completing a postdoctoral fellowship in microbiology and immunobiology at the Harvard Medical School under the guidance of Professor Ann Hochschild.

  • Alanna Schepartz

    Professor Schepartz’s research group is interested in questions that span the chemistry-biology continuum. We seek to establish new knowledge about the chemistry of complex cellular processes and apply this knowledge to design or discover molecules–both small and large–with unique or useful properties. We apply the tools of organic synthesis, biochemistry, biophysics, and structural, molecular, and synthetic biology in our work. Current projects focus on (1) repurposing the ribosome to biosynthesize sequence-defined chemical polymers and polyketides; (2) exploring and improving novel tools for trafficking proteins to the cytosol and nucleus for therapeutic applications; (3) understanding the mechanism by which chemical information is transported through cellular membranes; and (4) developing new probes and fluorophores to image organelle dynamics at super-resolution for highly extended times and in multiple colors

  • Mark Blenner

    My research group addresses big problems in sustainability, human health, national defense, and space exploration – using synthetic biology, metabolic engineering, genomics & systems biology, and protein engineering. We are most interested in derisking and speeding up cell line development. We work mostly in eukaryotic systems (non-model yeast and mammalian cells) as well as bacteria.

  • Jeffrey Gralnick

    Jeffrey Gralnick is a bacterial physiologist and geneticist who earned his PhD in Bacteriology with Diana Downs at University of Wisconsin – Madison. He began working with the environmental bacterium Shewanella oneidensis as a postdoc at Caltech with Dianne Newman. In 2005 he started his lab at the University of Minnesota BioTechnology Institute focusing on extracellular electron transfer in environmental bacteria that make a living by transforming redox reactive metals. His lab uses synthetic biology to both engineer and understand these usual microbes.

  • Mark Mimee

    Mark Mimee is an Assistant Professor in the Department of Microbiology and the Pritzker School of Molecular Engineering. His interest in microbial life began in Montreal, Canada, where he completed his Bachelor of Science in Microbiology & Immunology at McGill University. Inspired by the nascent field of synthetic biology, Mark pursued studies at the Massachusetts Institute of Technology, completing his PhD in Microbiology with Dr. Timothy Lu as an HHMI International Student Fellow and a Qualcomm Innovation Fellow. His research focuses on developing strategies to precisely engineer the activity and composition of the microbiota. His long-term vision is to implement these technologies to chart new basic and translational studies to exploit the microbiota for human health.

  • Merja Penttilä

    Merja Penttilä is a research professor in biotechnology at VTT Technical Research Centre of Finland, and an adjunct professor in synthetic biology at Aalto University. Her expertise is on engineering of microbes for the production of fuels, chemicals, enzymes and materials. She has acted as the director of the Academy of Finland CoE on White biotechnology – Green chemistry, and is a PI in the current CoE on Molecular engineering of biosynthetic hybrid materials (Hyber). She has coordinated a large strategic project “Living Factories: Synthetic Biology for a sustainable Bioeconomy”, and led many EU level and industrial projects. She is acting an advisory board or committee member of a number of international organisations. She is the initiator of Synbio Powerhouse, an ecosystem to promote biotechnology and synthetic biology in Finland and beyond. She has total of 334 publications, 14 457 Web of science citations, and h-index of 70.

  • Leonard Brizuela

    Dr. Brizuela conducted his graduate research at CSHL and postdoctoral work at Merck Sharp & Dohme Research Labs. He later took a scientist position at the EMBL and subsequently moved to Mitotix Inc. to work on cancer drug discovery. There he rose through the ranks of the organization, from senior scientist to head of the kinase inhibitor program and Director of Biochemistry across all drug discovery programs. He then moved to Harvard Medical School where he was Associate Director of the Harvard Institute of Proteomics as well as Director of the Proteomics Center for the Biodefense program at Harvard (NERCE) and faculty member of BCMP.
    He joint Agilent Technologies, where he acted as Director of Science and Technology for the Genomics and Life Sciences groups and currently works under the CTO office as Associate Diretor of University Relations and External Research. Dr. Brizuela has produced influential work and numerous publications in the areas of cell cycle regulation, cancer biology, drug discovery and genomics. He is experienced with technology development/innovation. He has proven ability to build and execute scientific, technology development and product development activities, as well as to build collaborations and outsourcing within and across organizations.

  • Mark Rogers

    Currently engaged in helping GenoFAB to bring 5S Lean principals into the synthetic biology lab. Recent work includes data analysis on factorial experimental designs for assessing the impact of different gene architectures on yeast colony growth. Previously my research focused on applying machine learning to problems in bioinformatics, with an emphasis on data integration. Specific research areas included methods for predicting mRNA alternative splicing patterns from RNA-Seq, gene models and ESTs (SpliceGrapher), as well as data-level (single kernel), kernel-level (MKL) and model-level (ensemble) approaches to integrating features for prediction of pathogenic germline or somatic single-nucleotide variants (SNVs) (FATHMM-MKL, FATHMM-XF, CScape and ongoing work).

  • Jason Zwolak

    My professional training started at Virginia Tech during my masters and PhD under the guidance of my co-advisors: John Tyson of the Biology Department and Layne Watson of the Computer Science department. This was a unique beginning to have co-advisors and I believe it gave me a unique understanding of interdisciplinary work.

    As a professional I have since continued a unique path where I balance work, life, and continuing education. I never stop learning the latest tools, the latest paradigms, the latest techniques, and the latest patterns for designing and creating the best software we, as human beings, know how to create. This is my professional passion.

  • Jared DeCoste

    Dr. DeCoste is a Research Chemist at CCDC Chemical and Biological Center (formerly the Edgewood Chemical Biological Center (ECBC)) leading the Biological Engineering for Applied Materials Solutions (BEAMS) program. His last 9 years of experience at ECBC have been in the Chem/Bio Protection Division mainly focusing on novel materials development for the remediation of chemical threats. His work has led to more than 50 manuscripts, 50 oral presentations, and 5 patents, on his research. His work has been highlighted by periodicals/news outlets including Chemical and Engineering News, Materials Today, Fox News, Science Daily, CBRNE World, and Nature. Dr. DeCoste has been recognized by his superiors and peers through numerous awards including the ACS Maryland Chemist of the Year Award, Achievement Medal for Civilian Service, ECBC’s Rookie of the Year for Outstanding Early Career Achievement, ECBC’s Safety Award, ECBC’s STEM Volunteer Award, Leidos’s Publication Prize for Physical sciences, and the 2018 Md ACS Chemist of the Year Award. His work in the BEAMS program has been a highlight of his career thus far as it has allowed him to collaborate and innovate in ways that only working in a highly interdisciplinary field allows. His work has always revolved around finding unique ways to progress science through working together, as evidenced in the pride he takes in aiding others through mentorship, encouraging collaboration, and developing opportunities to learn and evolve in the ever changing scientific landscape.

  • Sam Weiss Evans

    Sam’s work focuses on the governance of security concerns in emerging research technology, especially biology. He studies and actively engages with a range of communities building new approaches to the identification and governance of security concerns, including US and British governments, the international Genetically Engineered Machines Competition, DARPA, and the United Nations Institute on Disarmament Research.

  • Rebecca Nugent

    Rebecca is an experienced R&D executive focused on commercializing research in the biotech industry enabling applications such as cell & gene therapies, synthetic biology and genomics. Dr. Nugent is currently the VP of HTP Operations at Tessera Therapeutics. Prior to Tessera, she led the research department at Synthego, developing novel technologies for genome engineering with a focus on human cell and gene therapies. Prior to Synthego, Rebecca spent six years at Twist Bioscience where she focused on the development of Synthetic Biology and Next-Generation Sequencing Target Enrichment (NGS TE) products. She did her Post-Doc at New England Biolabs and received her Ph.D. in Molecular Biology from the University of Southern California, where she studied yeast genetics with an emphasis on genomic stability.

  • Blake Simmons

    Dr. Simmons is the Director of the Biological Systems and Engineering Division at Lawrence Berkeley National Laboratory (biosciences.lbl.gov). He also serves as the Chief Science and Technology Officer and Vice-President of the Deconstruction Division at the Joint BioEnergy Institute (www.jbei.org), a DOE Office of Science funded project tasked with the development and realization of next-generation “drop-in” biofuels and bioproducts produced from sustainable, non-food lignocellulosic biomass. He is also the Project Management Lead for the DOE Agile BioFoundry (https://agilebiofoundry.org/).

  • Ian Wheeldon

    Dr. Wheeldon is an Associate Professor of Chemical and Environmental Engineering at the University of California, Riverside (UCR). He is also the director of UCR’s Center for Industrial Biotechnology. Dr. Wheeldon received his PhD in Chemical Engineering from Columbia University in 2009 and completed two years of postdoctoral training at Harvard Medical School and the Wyss Institute for Biologically Inspired Engineering at Harvard University. He received a Master’s of Applied Science from the Royal Military College of Canada, and a Bachelor’s of Applied Science from Queen’s University, Canada. Dr. Wheeldon’s laboratory focuses on synthetic biology for chemical synthesis.

  • Tara Deans

    Dr. Tara Deans received her PhD from Boston University in Biomedical Engineering. Following her postdoctoral training at Johns Hopkins University, she became an Assistant Professor in the Biomedical Engineering Department at the University of Utah. Currently, Dr. Deans runs an applied mammalian synthetic biology laboratory where her lab focuses on building novel genetic tools to study the mechanisms of stem cell differentiation for the purpose of directing their cell fate decisions. Recently, Dr. Deans received three prestigious awards to support this area of research: the NSF CAREER Award, the Office of Naval Research (ONR) Young Investigator Award, and the NIH Trailblazer Award. In addition to her research, Dr. Deans was recently named a STEM Ambassador in the STEM Ambassador Program (STEMAP) at the University of Utah to engage underrepresented groups in STEM fields.

  • Back to top ⇑