Profiles

  • Keith Tyo

    Keith E.J. Tyo is associate professor of Chemical and Biological Engineering and (by courtesy) Microbiology and Immunology at Northwestern University and founding member of the Center for Synthetic Biology. Keith received his undergraduate degree from West Virginia University, PhD from Massachusetts Institute of Technology and was a NIH National Research Service Award Postdoctoral Fellow at Chalmers University, Sweden.

    Keith’s research interests are at the intersection of Synthetic Biology, Sustainability, and Global Health. His group is focused on understanding and engineering microbial metabolism to make fuels and chemicals from renewable and waste carbon sources. His group uses genetics, metabolomics, and computational tools to guide these efforts. His second focus is on engineering protein-based biosensors that enable low-cost, point-of-care detection of important clinical biomarkers in impoverished, rural settings. His work has been published in Science and Nature Biotechnology, and has been received the NSF CAREER award.

  • Milan Mrksich

  • Robert Ziman

    Robert is a research software engineer with a decade of experience supporting bioinformatics and computational biology projects in both academia and industry. He was a bioinformatics programmer at The Centre for Applied Genomics in Toronto, a bioinformatics associate at Genentech in South San Francisco, and a research associate in the Cohen Lab for Aging, Systems, and Statistics at the University of Sherbrooke in Quebec. He co-founded and co-hosted the Longevity Biotech Show podcast and has been observing the longevity biotech scene since the early 2000s. Robert holds a B.A.Sc. in Engineering Science from the University of Toronto.

  • Cătălin Voiniciuc

    Cătălin Voiniciuc is an Associate Professor of Plant Synthetic Biology and focuses on bioengineering cell surfaces, biopolymers and smaller molecules for agricultural, bioenergy, and biomedical needs. After plant biology MSc and PhD degrees in Canada and Germany, he began applying Synthetic Biology for research on complex carbohydrates, particularly the matrix polysaccharides of the plant cell wall. Since founding the Designer Glycans group (2019; relocated to Florida in 2022), he has been developing novel synthetic biology approaches that leverage liquid handling robots, artificial intelligence (AI), and directed evolution to discover and improve enzymes.

  • Sheela Vemu

    Associate Professor at Biology, Waubonsee Community College, IL. I am a Bio QUEST curriculum consortium fellow, contributor to the development of the Scientific Teaching Course from the National Institute of Scientific Teaching (NIST) and Editorial Board member for CBE-Life Sciences Education (LSE) journal.My doctoral training is in Pharmacology and Molecular biology. Recently, my scholarship has shifted to science education. I enjoy working with all students, especially freshman/sophomores from diverse backgrounds in biology education research projects in the aspects of effective study strategies and metacognition. I am passionate about implementing Course -Based Undergraduate Experiences (CUREs) with the lens of a quantitative data literacy to foster inclusion in a community college classroom. I continue to use project based assignments and data interpretation modules with scientific contributions of scientists who are members of historically excluded groups. Teaching is the way I connect with people, especially young people. I learn so much from them in trying to figure out how to help them learn.I enjoyed co-leading the first ASCN Inclusive STEM Teaching Project ASCN Learning community in 2021. In my workings with various groups, I learned the skills of building learning communities to foster shared common goals and attitudes while promoting an equitable participation of all members. It gave me a platform to bring the voices of the community college landscape with STEM practitioners from other institution types. The opportunities to be informed by the lived perspectives from different stakeholders, led me to ponder about the aspects of implementing and scaling change. I see myself as a change agent at the grassroots level.

  • Kaitlin Dailey

    I am a Research Instructor at the University of Nebraska Medical Center’s Eppley Institute for Cancer Research, hosted by the labs of Dr. Michael (Tony) Hollingsworth (cancer biology, immunology) and Dr. Ken Bayles (bacterial genetics, microbiology). During my doctoral studies, I became fascinated with the many advantages oncolytic bacteria have over traditional therapeutics. As a result, I pursued specific training in genetic engineering and anaerobic bacteria. I performed ground-breaking studies, accomplishing the first CRISPR-mediated modification of Clostridium novyi-NT and established methodologies that have added to the field of biologic therapeutics. I chose post-doctorate studies at UNMC to further my training in immunology, cancer models, bacterial genetics, and microbiology. My long-term career goal is to establish a diverse and equitable academic research lab focused on genetically engineering single celled organisms for pharmaceutical and biofuel development. Additionally, I ascribe to the teacher/scholar model and intend to use my expertise to generate graduate and undergraduate courses as well as to mentor students in a laboratory setting – while fostering inclusive environments in both circumstances.

  • Devin Camenares

    I have been interested in synthetic biology for over a decade – it has motivated much of my academic career and is highlighted by involvement in iGEM. Attending the Jamboree in 2006, I returned as a volunteer in 2013 and 2014, after completing a PhD in Molecular Biology (Studying trans-translation in E. coli under Dr. Wali Karzai at Stony Brook University). I have been the primary mentor for teams at the two institutions where I taught; Kingsborough Community College (2016, 2017) and Alma College (2019 to 2023). I have also participated in the iGEM community in other ways, acting as a judge in 2017 and 2018, and an After iGEM committee member working on the EduHall project and, most recently, the SynBio-101 project. In addition to iGEM and other synthetic biology research, I have active research in bioinformatics, self-taught in Java and other languages. Currently, I am a research scientist at UDRI, leveraging synthetic biology expertise to address client needs. I am also a co-founder of the Great Lakes SynBio Association, a nonprofit dedicated to fostering stronger connections between Synthetic Biology educational programs, colleges, industry, and students in the Midwest.

    When I am not in the lab or in meetings, I am either spending time with my wife or daughter, on the pickleball or tennis courts, or at the chess board (I used to be a USCF rated expert and still an avid player).

  • Jorge Marchand

    Dr. Jorge Marchand is an Assistant Professor at the University of Washington in the Department of Chemical Engineering. He did his PhD work at the University of California, Berkeley in the research group of Michelle Chang, where he worked on the discovery of biosynthetic pathways for making terminal alkyne amino acids. His postdoctoral work was done at Harvard Medical School with the George Church group. Here, he focused on engineering translation and developing new sequencing technologies to study tRNA. He now runs an independent research group that aims to utilize fundamental approaches in synthetic biology, chemical biology, biosynthesis, and biomolecular engineering for reprogramming life at the nucleic acid level.

  • Ania-Ariadna Baetica

    Dr. Ania-Ariadna Baetica is an Assistant Professor in the Department of Mechanical Engineering and Mechanics at Drexel University. She received her BA degree from Princeton University in 2012 and her PhD from California Institute of Technology in 2018. Following her degrees, she was a postdoctoral scholar at the University of California San Francisco.

    Dr. Baetica’s group leverages control theory along with systems biology, synthetic biology, and computational science to solve biotechnological and medical challenges. Her group designs robust and modular synthetic biological circuits by incorporating layered feedback mechanisms.

  • Ian Ehrenreich

    My lab studies how genomes encode organisms’ phenotypes. To do this, we use techniques from genetics, molecular systems biology, and synthetic biology. In the area of synthetic biology, we have developed new approaches for building synthetic chromosomes from natural DNA.

  • Chelsea Hu

    I’m a new faculty at Texas A&M studying synthetic biology and control theory. Before moving to Texas, I completed four years of postdoctoral training in the Richard Murray Group at Caltech. I received my Ph.D. in Chemical and Biomolecular Engineering from Cornell University in 2018, advised by Julius B. Lucks.

  • Ava Karanjia

    Ava Karanjia is a current PhD student and NSF Graduate Research Fellow in Chemical Engineering at the University of Washington, where her research focuses on building transcriptional programs in bacteria. Ava is working on expanding CRISPRa technologies to improve methods of transcriptional signal conversion and transduction. She is also pursuing data science and astrobiology graduate certificates. Ava has undergraduate degrees in chemical engineering and microbiology from Arizona State University, where she worked on quorum sensing regulatory systems and other transcriptional activators. She has also worked at NASA Ames Research Center, where she screened and engineered non-traditional yeast candidates for in-situ microbial space technologies. Ava is a big proponent of science communication and has been actively involved in outreach efforts at the University of Washington and EBRC.

  • Seung Hwan “Allen” Lee

    Seung Hwan “Allen” Lee received Ph.D. in Chemical and Biomolecular Engineering from Rice University and is currently a postdoctoral scholar at Ramon Gonzalez’s lab at the University of South Florida. Allen has a strong passion in leveraging the capabilities of engineering biology to convert waste molecules into value-added products in a sustainable way. He has a special interest in engineering one-carbon (C1) metabolism for efficient utilization of C1 feedstock in biomanufacturing. In his free time, he loves to listen to classical music and play squash.

  • Samuel MD Oliveira

    I am a Research Assistant Professor at the Department of Electrical and Computer Engineering (ECE) and the director of the Oliveira Lab (www.oliveiralab.me), a recently created research group at Boston University (BU). In addition, I am the Senior Manager of the DAMP lab (www.damplab.org) at BU.

    The Oliveira lab investigates the emergence of microbial community complexity and their underlying interactions in varying environmental contexts and studies microbial community design principles and metrics to help build novel collective behaviors. We hope that breakthroughs in computational and synthetic biology methods will accelerate our knowledge of the links between genetic sequences and intercellular communication to study and engineer the spatiotemporal behavior of biological networks. Among my key collaborators: i) Prof. Chris Voigt (MIT) for improving the predictive DNA design automation tool named Cello (Genetic Circuit Design Automation with Cello 2.0. Nature Protocols).

    In my early career, I have published more than 30 articles in journals, conference proceedings, and book chapters, acted as the guest Editor for JoVE, and as a reviewer for Nat. Comm., ACS Synth. Biol., Synth. Biol. J., among others. In addition, I have directly supervised and co-supervised 7 research staff, 7 graduate students (none of whom received their Ph.D. with me), 3 master’s students, and over 14 undergraduates. I was one of the recipients of the Sao Paulo Foundation’s Best Innovative Biotech Product Award in 2019. Based on that, I co-founded a commercial synthetic biology, automation-based company named Doroth (www.doroth.com.br) in Brazil.

    Currently, with the support from a $1.4M NSF grant, BU’s Professor Douglas Densmore (co-PI), Prof. Andrews (PI) from UMass Amherst, and my team (technical lead support) are teaming up on an ambitious effort to create microscopic, programmable “living devices” which can detect and neutralize specific toxic contaminants found in drinking water.

  • Dr. Muhammad Saad Ahmed

    The main research interest of Dr. Ahmed is to focus on industrially important metabolites production in microbes through the application of system metabolic engineering and synthetic biology. Previously, Dr. Ahmed developed industrially competitive microbial strains that were capable of producing industrially important secondary metabolites, for instance, β-amyrin, squalene, etc., and these strains are highly efficient for commercialization. Moreover, Dr. Ahmed expanded his research interest toward other industrially important metabolites, i.e., fragrance, flavor, and drugs, that might be in the category of alkaloids, sesquiterpenoids, monoterpenoids, diterpenoids, triterpenoids, and tetraterpenoids. These metabolites are normally used in pharmaceuticals, nutraceuticals, and cosmeceuticals industries as raw materials for the production of medicines, foods, and cosmetics.

  • Yogesh Goyal

    Yogesh Goyal is an Assistant Professor of Cell & Developmental Biology at the Feinberg School of Medicine, Northwestern University. Yogesh received his B.Tech. with Honors in Chemical Engineering from the Indian Institute of Technology Gandhinagar, and his Ph.D. in Chemical and Biological Engineering focusing on quantitative developmental biology from Princeton University. Yogesh pursued postdoctoral work in single-cell systems and synthetic biology in Bioengineering at the University of Pennsylvania. Yogesh’s major honors include Burroughs Wellcome Fund CASI Award, Schmidt Science Fellowship, STAT Wunderkind, and the Jane Coffin Childs Fellowship. Yogesh’s group combines theory, computation, and single-cell resolved experiments to track and control cellular plasticity and fate choices in developing tissues and cancer.

  • Bojing Jiang

  • Wilson Sinclair

    Wilson Sinclair is a Postdoctoral Scholar at EBRC working in the Security focus area. His primary interests are synthetic biology investment, biosecurity policy, building a robust bioeconomy, and microbiome engineering. He is passionate about breaking down barriers between research disciplines and building bridges between experts in engineering biology and social sciences across academia, industry, government, and advocacy to solve complex global problems.

    Prior to joining EBRC, Wilson was a Science Policy Intern at the NIH Office of Science Policy where he supported short- and long-term development of programs relating to bioethics, data science, and clinical research policy. His graduate research utilized bioorthogonal chemistry to study host-pathogen interactions in tuberculosis for therapeutic discovery. Over nearly a decade at the bench, he has applied his broad skills as a chemical biologist to several projects across the fields of glycobiology, synthetic chemistry, cancer immunology, and epitranscriptomics.

    Wilson holds a Ph.D. in Chemistry from Stanford University. He also has a B.A. from Haverford College majoring in Chemistry with a Biochemistry concentration and Spanish minor. He is a Chicago native and enjoys spending his free time trying new restaurants, solving puzzles, and exploring museums.

  • Caroline Ajo-Franklin

    Caroline Ajo-Franklin earned a B.S. in chemistry from Emory University in Atlanta, GA in 1997 and a Ph.D. in chemistry from Stanford University in Palo Alto, CA in 2004. She trained as Postdoctoral Fellow with Prof. Pam Silver in the Department of Systems Biology at Harvard Medical School in Cambridge, MA from 2005-2007. From 2007-2019, she was a Staff Scientist within the Molecular Foundry at Lawrence Berkeley National Laboratory in Berkeley, CA. In 2019, she joined the faculty of Rice University in Houston, TX as a Professor of BioSciences with joint appointments in Bioengineering and Chemical and Biomolecular Engineering. Her strongly interdisciplinary, highly collaborative research program focuses on exploring the interface between living organisms and non-living materials and engineering this interface for applications in energy, environment, and biomedicine. Prof. Ajo-Franklin was named as a recipient of the Women@ the Lab award in 2018 and as Cancer Prevention and Research Institute of Texas (CPRIT) Scholar in 2019. She is on the Editorial Board of ACS Synthetic Biology and is an Editor at mSystems.

  • Back to top ⇑