Virtual Workshops – Technical Roadmap for Materials from Engineering Biology

May-June, 2020 | Virtual | Roadmapping


EBRC – with support from the Division of Materials Research at NSF – invites you to contribute to a technical roadmap for materials from engineering biology.

The roadmap is currently in a drafting stage and we need experts to help continue to define and describe the 20+ year future for basic research and development at the intersection of materials science and synthetic/engineering biology. At a time like this, we believe that it is more important than ever for scientists to help guide policymakers and funding agencies in how to best support scientific research, and technical roadmaps are a highly-impactful way to do that.

EBRC is facilitating a series of virtual mini-workshops (2.5 – 3 hours each) focused on specific biomaterials subtopics to construct the roadmap. Workshops are organized as follows:

  • Workshop participants will engage in discussion and drafting of roadmap content covering a variety of topics.
  • Roadmap content will include description of current state-of-the-art science and engineering, milestones for technical achievements, and overarching goals and capabilities that will contribute to the next generation of bio-inspired, bio-enabled, and living materials.
  • Participants can expect to review instructions for contributing and a summary of the current content prior to the workshop, and are encouraged to continue contributing and providing insight, feedback, and review as we work toward a final product.

Details about each workshop, including dates/times, select topics to be covered, can be found below (registration deadline one week prior to workshop). Zoom videoconferencing links will be emailed to registrants. For more information, please contact [email protected]


Wednesday, June 17 | 8:00am – 10:30am Pacific (Registration by June 11)

REGISTRATION HAS CLOSED; for more information, please contact [email protected]

Workshop topics will include:

    • Designing and producing materials dynamic materials capable of closed-loop feedback systems, including1Drachuk I, Harbaugh S, Geryak R, Kaplan DL, Tsukruk VV, Kelley-Loughnane N. Immobilization of Recombinant E. coli Cells in a Bacterial Cellulose–Silk Composite Matrix To Preserve Biological Function. ACS Biomaterials Science & Engineering 2017 3 (10), 2278-2292. doi: 10.1021/acsbiomaterials.7b00367; Tay PKR, Nguyen PQ, Joshi NS. A Synthetic Circuit for Mercury Bioremediation Using Self-Assembling Functional Amyloids. ACS Synth Biol. 2017;6(10):1841‐1850. doi:10.1021/acssynbio.7b00137; Gilbert C, Ellis T. Biological Engineered Living Materials: Growing Functional Materials with Genetically Programmable Properties. ACS Synth Biol. 2019;8(1):1‐15. doi:10.1021/acssynbio.8b00423; Nielsen AA, Der BS, Shin J, et al. Genetic circuit design automation. Science. 2016;352(6281):aac7341. doi:10.1126/science.aac7341; Liu X, Tang TC, Tham E, et al. Stretchable living materials and devices with hydrogel-elastomer hybrids hosting programmed cells. Proc Natl Acad Sci U S A. 2017;114(9):2200‐2205. doi:10.1073/pnas.1618307114; Weisenberger MS, Deans TL. Bottom-up approaches in synthetic biology and biomaterials for tissue engineering applications. J Ind Microbiol Biotechnol. 2018;45(7):599‐614. doi:10.1007/s10295-018-2027-3
      :

      • Sensing, signal encoding, and storage,
      • Signal integration and management,
      • Communication and response,
      • Computation (e.g., logic functions)
    • Integrating and functionalizing the biology-material (biotic-abiotic) interface2Heyde KC, Ruder WC. Programming Biomaterial Interactions Using Engineered Living Cells. Methods Mol Biol. 2018;1772:249‐265. doi:10.1007/978-1-4939-7795-6_14; Chen AY, Zhong C, Lu TK. Engineering living functional materials. ACS Synth Biol. 2015;4(1):8‐11. doi:10.1021/sb500113b
    • Tools and technologies to develop robust and reproducible materials properties testing for (dynamic) biomaterials3Boudot C, Boccoz A, Düregger K, Kuhnla A. A novel blood incubation system for the in-vitro assessment of interactions between platelets and biomaterial surfaces under dynamic flow conditions: The Hemocoater. J Biomed Mater Res A. 2016;104(10):2430‐2440. doi:10.1002/jbm.a.35787; Quinci F, Dressler M, Strickland AM, Limbert G. Towards an accurate understanding of UHMWPE visco-dynamic behaviour for numerical modelling of implants. J Mech Behav Biomed Mater. 2014;32:62‐75. doi:10.1016/j.jmbbm.2013.12.023
    • Multi-scale modeling for biomaterial properties and dynamic activity4Gronau G, Krishnaji ST, Kinahan ME, et al. A review of combined experimental and computational procedures for assessing biopolymer structure-process-property relationships. Biomaterials. 2012;33(33):8240‐8255. doi:10.1016/j.biomaterials.2012.06.054; Raffaini G, Ganazzoli F. Understanding the performance of biomaterials through molecular modeling: crossing the bridge between their intrinsic properties and the surface adsorption of proteins. Macromol Biosci. 2007;7(5):552‐566. doi:
      10.1002/mabi.200600278

Types of participant-expertise we’re looking for (but not limited to): circuit/pathway engineering, cell biology, computational biology, molecular dynamics, materials science

Past workshops:
Thursday, May 28 | 8am – 11am Pacific (Registration by May 21)

REGISTRATION HAS CLOSED; for more information, please contact [email protected]

Workshop topics will include:

    • Integrating and functionalizing the biology-material (biotic-abiotic) interface5Heyde KC, Ruder WC. Programming Biomaterial Interactions Using Engineered Living Cells. Methods Mol Biol. 2018;1772:249‐265. doi:10.1007/978-1-4939-7795-6_14; Chen AY, Zhong C, Lu TK. Engineering living functional materials. ACS Synth Biol. 2015;4(1):8‐11. doi:10.1021/sb500113b
    • Templating and patterning of biomaterials6Chen AY, Deng Z, Billings AN, et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nat Mater. 2014;13(5):515‐523. doi:10.1038/nmat3912; Lagziel-Simis S, Cohen-Hadar N, Moscovich-Dagan H, Wine Y, Freeman A. Protein-mediated nanoscale biotemplating. Curr Opin Biotechnol. 2006;17(6):569‐573. doi:10.1016/j.copbio.2006.10.005
    • Designing and producing materials dynamic materials capable of closed-loop feedback systems, including7Drachuk I, Harbaugh S, Geryak R, Kaplan DL, Tsukruk VV, Kelley-Loughnane N. Immobilization of Recombinant E. coli Cells in a Bacterial Cellulose–Silk Composite Matrix To Preserve Biological Function. ACS Biomaterials Science & Engineering 2017 3 (10), 2278-2292. doi: 10.1021/acsbiomaterials.7b00367; Tay PKR, Nguyen PQ, Joshi NS. A Synthetic Circuit for Mercury Bioremediation Using Self-Assembling Functional Amyloids. ACS Synth Biol. 2017;6(10):1841‐1850. doi:10.1021/acssynbio.7b00137; Gilbert C, Ellis T. Biological Engineered Living Materials: Growing Functional Materials with Genetically Programmable Properties. ACS Synth Biol. 2019;8(1):1‐15. doi:10.1021/acssynbio.8b00423; Nielsen AA, Der BS, Shin J, et al. Genetic circuit design automation. Science. 2016;352(6281):aac7341. doi:10.1126/science.aac7341; Liu X, Tang TC, Tham E, et al. Stretchable living materials and devices with hydrogel-elastomer hybrids hosting programmed cells. Proc Natl Acad Sci U S A. 2017;114(9):2200‐2205. doi:10.1073/pnas.1618307114; Weisenberger MS, Deans TL. Bottom-up approaches in synthetic biology and biomaterials for tissue engineering applications. J Ind Microbiol Biotechnol. 2018;45(7):599‐614. doi:10.1007/s10295-018-2027-3
      :

      • Sensing, signal encoding, and storage,
      • Signal integration and management,
      • Communication and response,
      • Computation (e.g., logic functions)
    • Multi-scale modeling for biomaterial properties and dynamic activity8Gronau G, Krishnaji ST, Kinahan ME, et al. A review of combined experimental and computational procedures for assessing biopolymer structure-process-property relationships. Biomaterials. 2012;33(33):8240‐8255. doi:10.1016/j.biomaterials.2012.06.054; Raffaini G, Ganazzoli F. Understanding the performance of biomaterials through molecular modeling: crossing the bridge between their intrinsic properties and the surface adsorption of proteins. Macromol Biosci. 2007;7(5):552‐566. doi:
      10.1002/mabi.200600278

Types of participant-expertise we’re looking for (but not limited to): circuit/pathway engineering, biomolecular and cellular physiology, membrane engineering/dynamics, nanomaterials, polymers, metals and ceramics

——
Friday, June 5 | 8am – 11am Pacific (Registration by May 29)

REGISTRATION HAS CLOSED; for more information, please contact [email protected]

Workshop topics will include:

    • Biomolecular, metabolic, and chassis engineering for biomaterials9Basu A, Vadanan SV, Lim S. A Novel Platform for Evaluating the Environmental Impacts on Bacterial Cellulose Production. Sci Rep. 2018;8(1):5780. Published 2018 Apr 10. doi:10.1038/s41598-018-23701-y; Becker J, Rohles CM, Wittmann C. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng. 2018;50:122‐141. doi:10.1016/j.ymben.2018.07.008
    • Synthesis, polymerization, and degradation of bio-enabled and bio-composed materials10Hoshino Y, Kodama T, Okahata Y, Shea KJ. Peptide imprinted polymer nanoparticles: a plastic antibody. J Am Chem Soc. 2008;130(46):15242‐15243. doi:10.1021/ja8062875; Stabenfeldt SE, Gourley M, Krishnan L, Hoying JB, Barker TH. Engineering fibrin polymers through engagement of alternative polymerization mechanisms. Biomaterials. 2012;33(2):535‐544. doi:10.1016/j.biomaterials.2011.09.079; Yildirimer L, Seifalian AM. Three-dimensional biomaterial degradation – Material choice, design and extrinsic factor considerations. Biotechnol Adv. 2014;32(5):984‐999. doi:10.1016/j.biotechadv.2014.04.014
    • Enabling secretion and extrusion of biomaterials (polymers, functionalized biomolecules, etc.)11Nadell CD, Xavier JB, Levin SA, Foster KR. The evolution of quorum sensing in bacterial biofilms. PLoS Biol. 2008;6(1):e14. doi:10.1371/journal.pbio.0060014; Mitra SD, Afonina I, Kline KA. Right Place, Right Time: Focalization of Membrane Proteins in Gram-Positive Bacteria. Trends Microbiol. 2016;24(8):611‐621. doi:10.1016/j.tim.2016.03.009
    • Templating and patterning of biomaterials12Chen AY, Deng Z, Billings AN, et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nat Mater. 2014;13(5):515‐523. doi:10.1038/nmat3912; Lagziel-Simis S, Cohen-Hadar N, Moscovich-Dagan H, Wine Y, Freeman A. Protein-mediated nanoscale biotemplating. Curr Opin Biotechnol. 2006;17(6):569‐573. doi:10.1016/j.copbio.2006.10.005
    • Tools and technologies to enable scale-up and process manufacturing of biomaterials13Gdowski A, Johnson K, Shah S, Gryczynski I, Vishwanatha J, Ranjan A. Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials. J Nanobiotechnology. 2018;16(1):12. Published 2018 Feb 12. doi:10.1186/s12951-018-0339-0

Types of participant-expertise we’re looking for (but not limited to): polymer engineering, bioprocess engineering, metabolic engineering, biomolecular dynamics, materials science

——
CANCELLED Thursday, June 11 | 8:30am – 11am Pacific (Registration by June 4)

REGISTRATION HAS CLOSED; for more information, please contact [email protected]

Workshop topics will include:

    • Tools and technologies to enable scale-up and process manufacturing of biomaterials14Gdowski A, Johnson K, Shah S, Gryczynski I, Vishwanatha J, Ranjan A. Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials. J Nanobiotechnology. 2018;16(1):12. Published 2018 Feb 12. doi:10.1186/s12951-018-0339-0
    • Multi-scale modeling for biomaterial properties and dynamic activity15Gronau G, Krishnaji ST, Kinahan ME, et al. A review of combined experimental and computational procedures for assessing biopolymer structure-process-property relationships. Biomaterials. 2012;33(33):8240‐8255. doi:10.1016/j.biomaterials.2012.06.054; Raffaini G, Ganazzoli F. Understanding the performance of biomaterials through molecular modeling: crossing the bridge between their intrinsic properties and the surface adsorption of proteins. Macromol Biosci. 2007;7(5):552‐566. doi:
      10.1002/mabi.200600278
    • Tools and technologies to develop robust and reproducible materials properties testing for (dynamic) biomaterials16Boudot C, Boccoz A, Düregger K, Kuhnla A. A novel blood incubation system for the in-vitro assessment of interactions between platelets and biomaterial surfaces under dynamic flow conditions: The Hemocoater. J Biomed Mater Res A. 2016;104(10):2430‐2440. doi:10.1002/jbm.a.35787; Quinci F, Dressler M, Strickland AM, Limbert G. Towards an accurate understanding of UHMWPE visco-dynamic behaviour for numerical modelling of implants. J Mech Behav Biomed Mater. 2014;32:62‐75. doi:10.1016/j.jmbbm.2013.12.023

Types of participant-expertise we’re looking for (but not limited to): computational biology, molecular dynamics, material dynamics, bioprocess engineering, materials science

——

 


The following citations (indicated as footnotes above) are provided to suggest areas of science and engineering we will be considering for the roadmap topics covered in each workshop and how the topics might align with participants’ areas of expertise. These are representative works not intended to be inclusive or exclusive of what will be covered in the roadmap.

1. Drachuk I, Harbaugh S, Geryak R, Kaplan DL, Tsukruk VV, Kelley-Loughnane N. Immobilization of Recombinant E. coli Cells in a Bacterial Cellulose–Silk Composite Matrix To Preserve Biological Function. ACS Biomaterials Science & Engineering 2017 3 (10), 2278-2292. doi: 10.1021/acsbiomaterials.7b00367; Tay PKR, Nguyen PQ, Joshi NS. A Synthetic Circuit for Mercury Bioremediation Using Self-Assembling Functional Amyloids. ACS Synth Biol. 2017;6(10):1841‐1850. doi:10.1021/acssynbio.7b00137; Gilbert C, Ellis T. Biological Engineered Living Materials: Growing Functional Materials with Genetically Programmable Properties. ACS Synth Biol. 2019;8(1):1‐15. doi:10.1021/acssynbio.8b00423; Nielsen AA, Der BS, Shin J, et al. Genetic circuit design automation. Science. 2016;352(6281):aac7341. doi:10.1126/science.aac7341; Liu X, Tang TC, Tham E, et al. Stretchable living materials and devices with hydrogel-elastomer hybrids hosting programmed cells. Proc Natl Acad Sci U S A. 2017;114(9):2200‐2205. doi:10.1073/pnas.1618307114; Weisenberger MS, Deans TL. Bottom-up approaches in synthetic biology and biomaterials for tissue engineering applications. J Ind Microbiol Biotechnol. 2018;45(7):599‐614. doi:10.1007/s10295-018-2027-3

2. Heyde KC, Ruder WC. Programming Biomaterial Interactions Using Engineered Living Cells. Methods Mol Biol. 2018;1772:249‐265. doi:10.1007/978-1-4939-7795-6_14; Chen AY, Zhong C, Lu TK. Engineering living functional materials. ACS Synth Biol. 2015;4(1):8‐11. doi:10.1021/sb500113b

3. Boudot C, Boccoz A, Düregger K, Kuhnla A. A novel blood incubation system for the in-vitro assessment of interactions between platelets and biomaterial surfaces under dynamic flow conditions: The Hemocoater. J Biomed Mater Res A. 2016;104(10):2430‐2440. doi:10.1002/jbm.a.35787; Quinci F, Dressler M, Strickland AM, Limbert G. Towards an accurate understanding of UHMWPE visco-dynamic behaviour for numerical modelling of implants. J Mech Behav Biomed Mater. 2014;32:62‐75. doi:10.1016/j.jmbbm.2013.12.023

4. Gronau G, Krishnaji ST, Kinahan ME, et al. A review of combined experimental and computational procedures for assessing biopolymer structure-process-property relationships. Biomaterials. 2012;33(33):8240‐8255. doi:10.1016/j.biomaterials.2012.06.054; Raffaini G, Ganazzoli F. Understanding the performance of biomaterials through molecular modeling: crossing the bridge between their intrinsic properties and the surface adsorption of proteins. Macromol Biosci. 2007;7(5):552‐566. doi:
10.1002/mabi.200600278

5. Heyde KC, Ruder WC. Programming Biomaterial Interactions Using Engineered Living Cells. Methods Mol Biol. 2018;1772:249‐265. doi:10.1007/978-1-4939-7795-6_14; Chen AY, Zhong C, Lu TK. Engineering living functional materials. ACS Synth Biol. 2015;4(1):8‐11. doi:10.1021/sb500113b

6. Chen AY, Deng Z, Billings AN, et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nat Mater. 2014;13(5):515‐523. doi:10.1038/nmat3912; Lagziel-Simis S, Cohen-Hadar N, Moscovich-Dagan H, Wine Y, Freeman A. Protein-mediated nanoscale biotemplating. Curr Opin Biotechnol. 2006;17(6):569‐573. doi:10.1016/j.copbio.2006.10.005

7. Drachuk I, Harbaugh S, Geryak R, Kaplan DL, Tsukruk VV, Kelley-Loughnane N. Immobilization of Recombinant E. coli Cells in a Bacterial Cellulose–Silk Composite Matrix To Preserve Biological Function. ACS Biomaterials Science & Engineering 2017 3 (10), 2278-2292. doi: 10.1021/acsbiomaterials.7b00367; Tay PKR, Nguyen PQ, Joshi NS. A Synthetic Circuit for Mercury Bioremediation Using Self-Assembling Functional Amyloids. ACS Synth Biol. 2017;6(10):1841‐1850. doi:10.1021/acssynbio.7b00137; Gilbert C, Ellis T. Biological Engineered Living Materials: Growing Functional Materials with Genetically Programmable Properties. ACS Synth Biol. 2019;8(1):1‐15. doi:10.1021/acssynbio.8b00423; Nielsen AA, Der BS, Shin J, et al. Genetic circuit design automation. Science. 2016;352(6281):aac7341. doi:10.1126/science.aac7341; Liu X, Tang TC, Tham E, et al. Stretchable living materials and devices with hydrogel-elastomer hybrids hosting programmed cells. Proc Natl Acad Sci U S A. 2017;114(9):2200‐2205. doi:10.1073/pnas.1618307114; Weisenberger MS, Deans TL. Bottom-up approaches in synthetic biology and biomaterials for tissue engineering applications. J Ind Microbiol Biotechnol. 2018;45(7):599‐614. doi:10.1007/s10295-018-2027-3

8. Gronau G, Krishnaji ST, Kinahan ME, et al. A review of combined experimental and computational procedures for assessing biopolymer structure-process-property relationships. Biomaterials. 2012;33(33):8240‐8255. doi:10.1016/j.biomaterials.2012.06.054; Raffaini G, Ganazzoli F. Understanding the performance of biomaterials through molecular modeling: crossing the bridge between their intrinsic properties and the surface adsorption of proteins. Macromol Biosci. 2007;7(5):552‐566. doi:
10.1002/mabi.200600278

9. Basu A, Vadanan SV, Lim S. A Novel Platform for Evaluating the Environmental Impacts on Bacterial Cellulose Production. Sci Rep. 2018;8(1):5780. Published 2018 Apr 10. doi:10.1038/s41598-018-23701-y; Becker J, Rohles CM, Wittmann C. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng. 2018;50:122‐141. doi:10.1016/j.ymben.2018.07.008

10. Hoshino Y, Kodama T, Okahata Y, Shea KJ. Peptide imprinted polymer nanoparticles: a plastic antibody. J Am Chem Soc. 2008;130(46):15242‐15243. doi:10.1021/ja8062875; Stabenfeldt SE, Gourley M, Krishnan L, Hoying JB, Barker TH. Engineering fibrin polymers through engagement of alternative polymerization mechanisms. Biomaterials. 2012;33(2):535‐544. doi:10.1016/j.biomaterials.2011.09.079; Yildirimer L, Seifalian AM. Three-dimensional biomaterial degradation – Material choice, design and extrinsic factor considerations. Biotechnol Adv. 2014;32(5):984‐999. doi:10.1016/j.biotechadv.2014.04.014

11. Nadell CD, Xavier JB, Levin SA, Foster KR. The evolution of quorum sensing in bacterial biofilms. PLoS Biol. 2008;6(1):e14. doi:10.1371/journal.pbio.0060014; Mitra SD, Afonina I, Kline KA. Right Place, Right Time: Focalization of Membrane Proteins in Gram-Positive Bacteria. Trends Microbiol. 2016;24(8):611‐621. doi:10.1016/j.tim.2016.03.009

12. Chen AY, Deng Z, Billings AN, et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nat Mater. 2014;13(5):515‐523. doi:10.1038/nmat3912; Lagziel-Simis S, Cohen-Hadar N, Moscovich-Dagan H, Wine Y, Freeman A. Protein-mediated nanoscale biotemplating. Curr Opin Biotechnol. 2006;17(6):569‐573. doi:10.1016/j.copbio.2006.10.005

13. Gdowski A, Johnson K, Shah S, Gryczynski I, Vishwanatha J, Ranjan A. Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials. J Nanobiotechnology. 2018;16(1):12. Published 2018 Feb 12. doi:10.1186/s12951-018-0339-0

14. Gdowski A, Johnson K, Shah S, Gryczynski I, Vishwanatha J, Ranjan A. Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials. J Nanobiotechnology. 2018;16(1):12. Published 2018 Feb 12. doi:10.1186/s12951-018-0339-0

15. Gronau G, Krishnaji ST, Kinahan ME, et al. A review of combined experimental and computational procedures for assessing biopolymer structure-process-property relationships. Biomaterials. 2012;33(33):8240‐8255. doi:10.1016/j.biomaterials.2012.06.054; Raffaini G, Ganazzoli F. Understanding the performance of biomaterials through molecular modeling: crossing the bridge between their intrinsic properties and the surface adsorption of proteins. Macromol Biosci. 2007;7(5):552‐566. doi:
10.1002/mabi.200600278

16. Boudot C, Boccoz A, Düregger K, Kuhnla A. A novel blood incubation system for the in-vitro assessment of interactions between platelets and biomaterial surfaces under dynamic flow conditions: The Hemocoater. J Biomed Mater Res A. 2016;104(10):2430‐2440. doi:10.1002/jbm.a.35787; Quinci F, Dressler M, Strickland AM, Limbert G. Towards an accurate understanding of UHMWPE visco-dynamic behaviour for numerical modelling of implants. J Mech Behav Biomed Mater. 2014;32:62‐75. doi:10.1016/j.jmbbm.2013.12.023


Zoom links will be emailed to registrants.